Biologia II

Noções de Taxonomia e Classificação
Introdução à Zoologia

Ana Paula Ulian de Araújo
Nelma Regina Segnini Bossolan

2006
SUMÁRIO

1 CLASSIFICAÇÃO E NOMENCLATURA ..1
 1.1 INTRODUÇÃO ..1
 1.2 A CLASSIFICAÇÃO DOS SERES VIVOS ..1
2 A SISTEMÁTICA ..4
 2.1 O CONCEITO DE ESPÉCIE ...4
 2.2 OUTROS GRUPOS TAXONÔMICOS ..4
3 REGRAS DE NOMENCLATURA ...5
4 O REINO PROTISTA ..7
 4.1 MORTALIDADE DOS PROTOZOÁRIOS ..7
 4.2 PROCESSO REPRODUTIVO DOS PROTOZOÁRIOS ..10
4.3 CARACTERÍSTICAS DOS FILOS ..10
 4.3.1 SARCÓDÍNEOS ..10
 4.3.1.1 DIVERSIDADE DE SARCÓDÍNEOS ..11
 4.3.1.2 SARCÓDÍNEOS PARASITAS DO HOMEM ...12
 4.3.2 MASTIGOPHORA OU FLAGELADOS ...13
 4.3.2.1 FLAGELADOS PARASITAS DO HOMEM ..13
 4.3.3 OS CILIADOS ...15
 4.3.3.1 DIVERSIDADE DOS CILIADOS ...18
 4.3.4 ESPOROZOÁRIOS ..19
 4.3.4.1 O GÊNERO PLASMODIUM ...19
 4.3.4.2 TOXOPLASMA GONDII ..21
5. O REINO ANIMAL ..22
 A) CARACTERÍSTICAS GERAIS DOS ANIMAIS ..22
 NÍVEIS DE ORGANIZAÇÃO DO CORPO ..22
 SIMETRIA ..22
 DISPOSIÇÃO DAS ESTRUTURAS RELACIONADAS À DIGESTÃO ..23
 NÚMERO DE FOLHETOS GERMINATIVOS ..25
 PRESENÇA DO CELOMA ..25
 B) ORIGEM E EVOLUÇÃO DOS EUMETAZOÁRIOS ..26
5.1 OS INVERTEBRADOS ..27
 1 FILO PORIFERA (AS ESPONJAS) ...27
 1.1 CONCEITOS GERAIS ..27
 1.2 CARACTERÍSTICAS ..27
 1.3 TIPOS MORFOLÓGICOS ..29
 1.4 FISIOLOGIA ..30
 1.5 ASPECTOS EVOLUTIVOS ...32
 1.6 AS CLASSES DE ESPONJAS ..33
 2 FILO CNIDÁRIA ...34
 2.1 CONCEITOS GERAIS ..34
 2.2 CARACTERÍSTICAS GERAIS ...34
 2.3 CLASSIFICAÇÃO ...35
 2.3.1 CLASSE HYDROZOIA ..35
 2.3.2 CLASSE SCYPHOZOA ..37
 2.3.3 CLASSE ANTHOZOA ...38
 2.4 FISIOLOGIA ..39
 3 FILO PLATYHELMINTHES ..42
 3.1 CONCEITOS GERAIS ..42
3.2 CLASSIFICAÇÃO ..43
 3.2.1 CLASSE TURBELLARIA ..43
 3.2.2 CLASSE TREMATODA ..46
 3.2.3 CLASSE CESTODA ...46
3.3 DOENÇAS CAUSADAS POR PLATELMINTES AO HOMEM ... 48
 3.3.1 ESQUISTOSOMOSE ...48
 3.3.2 TENIÊSE ...49
4 OS ASQUELMINTOS..51
 4.1 FILO GASTROTRICHA ..51
 4.2 FILO ROTIFERA ...52
 4.3 FILO NEMATODA ..54
 NEMATÔDEOS PARASITAS DO HOMEM ...55
5 FILO MOLLUSCA (MOLUSCOS) ...61
 5.1 CARACTERÍSTICAS GERAIS ..61
 5.2 CLASSIFICAÇÃO ..64
 5.2.1 CLASSE BIVALVIA (OU PELECYPODA) ...64
 5.2.2 CLASSE GASTROPODA ..66
 5.2.3 CLASSE CEPHALOPODA ..67
 5.2.4 CLASSE AMPHINEURA OU POLYPLACOPHORA ..70
 5.2.5 CLASSE SCAPHOPODA ..71
 5.2.6 CLASSE MONOPLACOPHORA ..71
6 FILO ANNELIDA ...72
 6.1 CONCEITOS GERAIS ...72
 6.2 CARACTERÍSTICAS ...72
 6.3 CLASSIFICAÇÃO ...73
 6.3.1 CLASSE CLITELLATA ..73
 6.3.2 CLASSE POLYCHAETA ...77
6.4 ANATOMIA E FISIOLOGIA GERAL ..78
6.5 IMPORTÂNCIA PARA O HOMEM ..80
7 FILO ARTHROPODA ..80
 INTRODUÇÃO ..80
 CARACTERÍSTICAS GERAIS ...81
 7.1 EXOESQUELETO ...81
 7.2 MOVIMENTO E MUSCULATURA ..83
 7.3 CELOMA E SISTEMA CIRCULATÓRIO ...83
 7.4 TRATO DIGESTIVO ...83
 7.5 CÉREBRO ...84
 7.6 ÓRGÃOS SENSORIAIS ..84
 7.7 REPRODUÇÃO ..85
 CLASSIFICAÇÃO DOS ARTRÔPODES ...85
 A) SUBFILO TRILOBITA ...85
 B) SUBFILO CHELICERATA (GR. CHELE=GARRA + KEROS=CORNO)85
 C) SUBFILO CRUSTACEA (CRUSTA = CARAPAÇA DURA)94
 D) SUBFILO UNIRAMIA ...101
8 FILO ECHINODERMATA ...112
 8.1 CARACTERÍSTICAS GERAIS ...112
 8.2 CLASSIFICAÇÃO ...114
 8.2.1 CLASSE CRINOIDEA (CRINÓIDES) ...114
 8.2.2 CLASSE ECHINOIDEA ...115
 8.2.3 CLASSE ASTEROIDEA ...116
 8.2.4 CLASSE OPHIUROIDEA ..117
 8.2.5 CLASSE HOLOTHUROIDEA ...117
8.3 IMPORTÂNCIA PARA O HOMEM ..119
9 FILO CHORDATA ..119
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 OS CORDADOS INVERTEBRADOS</td>
<td>121</td>
</tr>
<tr>
<td>9.1.1 SUBFILO UROCHORDATA (TUNICADOS)</td>
<td>121</td>
</tr>
<tr>
<td>9.1.2 SUBFILO CEPHALOCHORDATA (ANFIOXOS)</td>
<td>122</td>
</tr>
<tr>
<td>9.2 SUBFILO VERTEBRATA</td>
<td>123</td>
</tr>
<tr>
<td>9.2.1 SUPERCLASSE PISCES</td>
<td>124</td>
</tr>
<tr>
<td>9.2.2 SUPERCLASSE TETRAPODA</td>
<td>135</td>
</tr>
<tr>
<td>9.2.2.1 CLASSE AMPHIBIA</td>
<td>135</td>
</tr>
<tr>
<td>9.2.2.2 CLASSE REPTILIA</td>
<td>139</td>
</tr>
<tr>
<td>9.2.2.3 CLASSE AVES</td>
<td>144</td>
</tr>
<tr>
<td>9.2.2.4 CLASSE MAMMALIA</td>
<td>152</td>
</tr>
<tr>
<td>GLOSSÁRIO</td>
<td>160</td>
</tr>
<tr>
<td>QUESTÕES DE REVISÃO</td>
<td>161</td>
</tr>
<tr>
<td>BIBLIOGRAFIA</td>
<td>163</td>
</tr>
</tbody>
</table>
1 Classificação e Nomenclatura

1.1 Introdução

Estima-se que existam na Terra milhões de diferentes tipos de organismos vivos compartilhando a biosfera. O reconhecimento dessas espécies está intimamente relacionado à história do homem.

Num determinado momento da história evolutiva, o homem começou a utilizar animais e plantas para sua alimentação, cura de doenças, fabricação de armas, objetos agrícolas e abrigo. A necessidade de transmitir as experiências adquiridas para os descendentes forçou-o a denominar plantas e animais. O documento zoológico mais antigo que se tem notícia, é um trabalho grego de medicina, do século V a.C., que continha uma classificação simples dos animais comestíveis, principalmente peixes.

Assim, a classificação dos seres vivos surgiu com a própria necessidade do homem em reconhecê-los. O grande número de espécies viventes levou-o a organizá-las de forma a facilitar a identificação e, consequentemente, seu uso.

1.2 A classificação dos seres vivos

Inicialmente, com base no modo de vida, direção da evolução e tipo da organização de seu corpo, os seres vivos foram divididos em dois grandes reinos: Animal e Vegetal. Mais tarde, como o desenvolvimento do microscópio, entre outras técnicas, tornou-se óbvio que muitos organismos não se encaixavam em nenhum desses reinos, por exemplo uma bactéria, que é um organismo unicelular, desprovido de envoltório nuclear e de estruturas membranosas intracelulares como retículo endoplasmático, mitocôndrias, cloroplastos e complexo de Golgi. Essas diferenças que a distingue dos demais organismos é bem mais fundamental que as diferenças entre animais e vegetais.

Outro sistema proposto, e também não mais utilizado, foi o de três reinos: Protista, Plantae e Animalia. Nesse sistema, reuniam-se no reino Protista organismos com características vegetais e animais.

Posteriormente, surgiu um novo sistema de classificação agrupando os organismos em quatro reinos: Monera (bactérias e cianofíceas), Protista (demais algas, protozoários e fungos), Plantae ou Metaphyta (desde brófiitas até as angiospermas) e Animalia ou Metazoa (desde espongiários até mamíferos).

Um sistema de classificação mais recente, compreende cinco reinos e foi proposto por Whittaker (1969). É composto por um reino procariótico, Monera, e outros quatro reinos eucarióticos (figura 1). Dos grupos eucarióticos, acredita-se que o Protista deu origem aos outros três grupos restantes (Plantae, Animalia e Fungi). Tais grupos, na maioria multicelulares, diferem fundamentalmente no seu modo nutricional.

O reino Monera é constituído por organismos unicelulares procariotos, coloniais ou não, autótrofos ou heterótrofos. Engloba as bactérias e cianofíceas (cianobactérias).

Organismos unicelulares eucariotos, coloniais ou não, constituem o reino Protista. Neste, existem diversos métodos nutricionais, incluindo a fotossíntese, a absorção e a ingestão. Compreende as algas unicelulares e os protozoários.
Figura 1: Divisão dos seres vivos em 5 reinos proposta por Whittaker (1969).

O reino Fungi é composto por organismos eucariotos heterotróficos, geralmente multinucleados (cenocíticos), sendo sua nutrição realizada por absorção.

Os organismos eucariotos fotossintetizantes (autótrofos) multicelulares compõem o reino Plantae, que compreende desde algas multicelulares até vegetais superiores.

O reino Animalia é composto por organismos eucaritos multicelulares heterotróficos, que têm a ingestão, ou absorção em alguns casos, como forma primária de nutrição. Engloba desde as esponjas até o homem. (A tabela 1 resume as características dos grandes grupos de organismos).

É claro que qualquer sistema de classificação apresenta muitas dificuldades, pois os seres vivos se modificam e evoluem ao longo do tempo e ainda, com o avanço da ciência, surgem novas descobertas a respeito das relações existentes entre os organismos. Todavia, o sistema de classificação proposto por Whittaker é, ainda hoje, o mais aceito e utilizado.
<table>
<thead>
<tr>
<th>Característica</th>
<th>Monera</th>
<th>Protista</th>
<th>Fungi</th>
<th>Plantae</th>
<th>Animalia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo celular</td>
<td>procarioto</td>
<td>eucarioto</td>
<td>eucarioto</td>
<td>eucarioto</td>
<td>Eucarioto</td>
</tr>
<tr>
<td>Núcleo</td>
<td>sem envoltório nuclear</td>
<td>com envoltório nuclear</td>
<td>com envoltório nuclear</td>
<td>com envoltório nuclear</td>
<td>com envoltório nuclear</td>
</tr>
<tr>
<td>Mitocôndrias</td>
<td>ausentes</td>
<td>presentes</td>
<td>presentes</td>
<td>presentes</td>
<td>presentes</td>
</tr>
<tr>
<td>cloroplastos</td>
<td>ausentes, há apenas lamelas fotossintéticas</td>
<td>presentes em algumas formas</td>
<td>ausentes</td>
<td>presentes</td>
<td>ausentes</td>
</tr>
<tr>
<td>parede celular</td>
<td>não celulósica (polissacarídeo + aminácido)</td>
<td>presente em algumas formas</td>
<td>composta por quitina e outros polissacarídeos</td>
<td>Celulósica</td>
<td>ausente</td>
</tr>
<tr>
<td>meios de recombinação genética</td>
<td>conjugação; transdução; transformação ou nenhum</td>
<td>fertilização e meiose, conjugação ou nenhum</td>
<td>fertilização e meiose ou nenhum</td>
<td>fertilização e meiose</td>
<td>fertilização e meiose</td>
</tr>
<tr>
<td>Modo de nutrição</td>
<td>autotrófica (químio e fotossintetizante) e heterotrófica</td>
<td>fotossintetizante e heterotrófica ou uma combinação</td>
<td>heterotrófica por absorção</td>
<td>fotossintetizante, na maioria</td>
<td>heterotrófica, por ingestão</td>
</tr>
<tr>
<td>Motilidade</td>
<td>por flagelos, deslizamento ou imóveis</td>
<td>cílios; flagelos; amebóide; fibrilas contráteis</td>
<td>cílios e flagelos em algumas formas, nenhuma na maioria</td>
<td>cílios e flagelos em formas inferiores e alguns gametas, nenhuma na maioria</td>
<td>cílios e flagelos, fibrilas contráteis</td>
</tr>
<tr>
<td>Pluricellularidade</td>
<td>ausente</td>
<td>ausente</td>
<td>presente, na maioria</td>
<td>presente nas formas superiores</td>
<td>presente em todas as formas</td>
</tr>
<tr>
<td>Sistema Nervoso</td>
<td>ausente</td>
<td>ausente</td>
<td>ausente</td>
<td>ausente</td>
<td>presente</td>
</tr>
</tbody>
</table>
2 A Sistemática

O estudo descritivo de todas as espécies de seres vivos e sua classificação dentro de uma verdadeira hierarquia de gruamentos constitui a sistemática ou taxonomia. Vamos começar a interpretar o papel da taxonomia revendo o conceito de espécie.

2.1 O Conceito de Espécie

Species em latim significa simplesmente "tipo". As espécies são, no sentido mais simples, os diferentes tipos de organismos. Uma definição mais técnica de espécie é: "um grupo de organismos que se cruzam entre si, sem normalmente cruzar-se com representantes de outros grupos". Os organismos pertencentes a uma espécie devem apresentar semelhanças estruturais e funcionais, similaridades bioquímicas e mesmo cariótipo, além da capacidade de reprodução entre si. A definição acima, embora útil para os animais, não é, entretanto, útil na taxonomia vegetal, porque cruzamentos férteis podem ocorrer entre plantas de tipos bastante diferentes. Também não se aplica esta distinção a organismos que não se reproduzem sexualmente.

À luz da teoria evolucionista, observa-se que uma espécie se modifica constantemente, no espaço e no tempo, em vez de ser uma forma imutável, ideal, como foi concebida por Lineu. Desta maneira, a palavra "espécie" possui diferentes significados para diferentes tipos de organismos, o que não é surpresa se considerarmos que a evolução nos vários grupos de organismos seguiu caminhos diversificados. No entanto, o termo permanece sendo útil e possibilita uma maneira adequada de se referir a organismos e catalogá-los.

2.2 Outros Grupos Taxonômicos

O reino é a maior unidade usada em classificação biológica. Entre o nível do reino e do gênero, entretanto, Lineu e taxonomistas posteriores adicionaram diversas categorias (ou taxa). Temos então, os gêneros agrupados em famílias, as famílias em ordens, as ordens em classes e as classes em filos (ou divisão, para os botânicos), seguindo um padrão hierárquico. Essas categorias podem ser subdivididas ou agregadas em várias outras, menos importantes, como, por exemplo, os subgêneros e as superfamílias.

Assim, hierarquicamente, temos:
Os animais, assim como as plantas, são popularmente conhecidos por nomes muito variáveis de um lugar para outro. Numa tentativa de universalizar os nomes de animais e plantas, os cientistas têm, há muito, procurado criar uma nomenclatura internacional para a designação dos seres vivos. Mark Catesby, por volta de 1740, publicou um livro de zoologia onde denominava o pássaro conhecido como tordo (sabiá americano) de *Turdus minor cinereo-albus non maculatus*, que significava: “tordo pequeno branco-acinzentado sem manchas”. Essa foi uma tentativa de padronizar o nome do pássaro, para que ele pudesse ser conhecido em qualquer idioma ou região, mas havia o inconveniente de usar uma denominação muito extensa.

Em 1735, o sueco Carl von Linné, botânico e médico, conhecido simplesmente por Lineu, lançou seu livro *Systema Naturae*, no qual propôs regras para classificar e denominar animais e plantas. Porém, foi somente na 10ª edição do seu livro, em 1758, que ele sugeriu uma nomenclatura mais simples, onde cada organismo seria conhecido por dois nomes apenas, seguidos e inseparáveis. Surgiu assim a nomenclatura binomial, a qual é ainda hoje utilizada. As regras para a denominação científica dos seres vivos foram firmadas posteriormente, no I Congresso Internacional de Nomenclatura Científica, em 1898.

A denominação científica dos animais segue certas regras definidas, as quais são esboçadas no Código Internacional de Nomenclatura Zoológica. Nomes científicos são latinizados, mas podem ser derivados de qualquer outra língua ou de nomes de pessoas ou lugares; a maioria dos nomes é derivada de palavras latinas ou gregas e geralmente refere-se a alguma característica do animal ou do grupo denominado. Por convenção, os nomes genéricos e específicos são latinizados, enquanto o nome das famílias, ordens, classes e outras categorias não o são, embora tenham letra inicial maiúscula. As principais regras da nomenclatura científica estão resumidas a seguir:

- Na designação científica os nomes devem ser em latim de origem ou, então, latinizados.
- Todo nome científico deve estar destacado no texto. Pode ser escrito em itálico, se for impresso, ou sublinhado se for em trabalhos manuscritos.
- Cada organismo deve ser reconhecido por uma designação binomial, sendo o primeiro termo para designar o seu gênero e o segundo, a sua espécie. Considera-se um erro grave usar o nome da espécie isoladamente, sem ser antecedido pelo gênero.
- O nome relativo ao gênero deve ser um substantivo simples ou composto, escrito com inicial maiúscula.
- O nome relativo à espécie deve ser um adjetivo escrito com inicial minúscula, salvo raras exceções: nos casos de denominação específica em homenagem a pessoa célebre. Por exemplo no Brasil, há quem escreva: *Trypanosoma Cruzi*, já que o termo *Cruzi* é a transliteração latina do nome de Oswaldo Cruz, uma homenagem a esse grande sanitarista brasileiro.
- Em trabalhos científicos, após o nome do organismo é colocado, por extenso ou abreviadamente, o nome do autor que primeiro descreveu e denominou, sem qualquer pontuação intermediária, seguindo-se depois uma vírgula e data da primeira publicação. Exemplos:

 Cachorro: *Canis familiaris* Lineu ou L., 1758.
Ancilóstoma: *Ancylostoma duodenale* Creplin ou C., 1845.

- A designação para espécies é binomial, mas para subespécies é trinomial. Por exemplo:
 - *Mycobacterium tuberculosis hominis* (tuberculose humana)
 - *Mycobacterium tuberculosis bovis* (tuberculose bovina)
 - *Mycobacterium tuberculosis avis* (tuberculose aviária)

- Em zoologia, a família é denominada pela adição do sufixo *idae* ao radical correspondente ao nome do gênero-tipo (gênero mais característico da família). Para subfamília, o radical adotado é *inae*. Exemplos:
 - Cascavel - gênero: *Crotalus*; família: Crotalidae; su famíliia: Crotalinae.

- **Lei da prioridade**: Se diversos autores denominarem um mesmo organismo diferentemente, prevalece sempre aquela mais antiga, ou seja, a primeira denominação.

- A substituição de nomes científicos é permitida somente em casos excepcionais, adotando para esses casos uma notação especial, já convencionada, que indica tratar-se de espécime reclassificado. Desta forma, se a posição sistemática de um organismo é modificada, o nome científico deve assumir a seguinte forma: menciona-se o nome do organismo já no novo gênero e, a seguir, entre parênteses, o nome do primeiro autor e a data em que a denominou; só então, fora dos parênteses, coloca-se o nome do segundo autor e a data em que reclassificou o espécime. Assim, a denominação da formiga saúva *Atta sexdans* (Lineu, 1758) Fabricius, 1804, indica que Fabricius mudou de gênero o animal inicialmente descrito e "batizado" por Lineu.

- Ao publicar a descrição de uma nova espécie, é prática comum designar um espécime-tipo, descrevê-lo e indicar em que coleção foi colocado.
4 O Reino Protista

Durante os últimos 20 anos, uma classificação básica alternativa às pré-existentes, que procura refletir mais acuradamente a filogenia sem ser ambígua, tem gradualmente adquirido adeptos e hoje se encontra bastante difundida. Neste contexto, os protistas englobam os antigos protozoários e certas algas, sendo que as classificações modernas reconhecem entre 27 e 45 filos (RUPPERT & BARNES, 96). A seguir descreveremos sucintamente os principais filos englobados pelos antigos protozoários, tratando os protistas fotosintetizantes juntamente com representantes do Reino Vegetal.

PROTOZOÁRIOS

Os protozoários são eucariontes que ocorrem como células isoladas ou em colônias de células. Apresentam dimensões predominantemente microscópicas. Sua denominação deriva do grego protos e zoon, que significam, respectivamente, "primeiro" e "animal". Esse termo, consagrado até hoje, foi criado para agrupar organismos eucariotos unicelulares com características próprias dos animais, tais como a capacidade de deslocamento e heterotrofia. Porém, alguns organismos com características animais e vegetais como a Euglena, por exemplo, também eram considerados protozoários. Atualmente, o termo protozoário tem sido aplicado numa designação coletiva, sem valor taxonómico em referência a unicelulares eucariotos heterotróficos (na maioria), que obtém seus alimentos por ingestão ou absorção. Os organismos unicelulares eucariotos autótrofos por sua vez, são denominados coletivamente de algas, termo que também não tem valor taxonómico.

Nos protozoários de formas coloniais, as células individuais podem ser ligadas por filamentos citoplasmáticos ou embebidas numa matriz comum. Tais células são semelhantes em estrutura e função, embora em algumas poucas formas, haja uma diferenciação de indivíduos em células vegetativas e reprodutivas. Em outros termos, os protozoários coloniais são apenas agregados de células independentes.

Estimava-se em 45.000 o número de espécies de protozoários em 1990, mas os protozoologistas reclamam que diversas vezes, o número existe num estado de anonimato. De total citado, cerca de 20.000 são espécies fósseis, 18.000 são de formas de vida livre e 7.000 parasitas.

Os protistas em geral ocupam um importante papel nas cadeias alimentares das comunidades naturais, onde existe água livre. Os autótrofos (algas) são abundantes nas águas salgadas e doces, assim como em associações simbióticas com animais, de vários níveis de organização, e protozoários. Alguns grupos em particular formam uma parte importante na dieta de numerosos animais. Há protozoários saprófitas e também que ingerem bactérias, fazendo uso de substâncias e organismos envolvidos na decomposição final das cadeias alimentares, e assim, fazendo recircular a matéria orgânica. Naturalmente, existem alguns protozoários que podem provocar doenças no homem.

Os principais grupos de protozoários são diferenciados em grupos baseados no modo de locomoção do organismo. As amebas se movem por expansões do seu citoplasma. Os membros do grupo Ciliophora se movimentam por meio de finos apêndices, ou cílios, que impulsionam a célula através de ondulações sincrónicas, como os braços de um nadador. Os flagelados têm apêndices filiformes, ou flagelos, geralmente localizados numa das extremidades do corpo celular, que movem as células em meio líquido. Os esporozoários se locomovem por deslizamento, já que não possuem organelas de locomoção externas.

Os protozoários encontram-se no reino Protista (organismos unicelulares eucariotos, coloniais ou não). Os principais filos são:
Sarcodina	Protozoários que se locomovem através de projeções celulares denominadas **pseudópodos**
Mastigophora | Protozoários que se locomovem através de **flagelos**.
Ciliophora | Protozoários que se locomovem utilizando **cílios**
Sporozoa | Protozoários que **não** possuem estrutura locomotora.

A maioria dos protozoários é microscópica. Alguns, entretanto, podem ser vistos a olho nu, como é o caso do _Spirostomum_, um ciliado de água doce que alcança 3 mm de comprimento, de algumas espécies do gênero _Globigerina_, um sarcodíneo marinho que vive em suspensão na água do mar. Além desses, que são organismos atuais, existe um registro fóssil, de eras geológicas passadas, de um sarcodíneo denominado _Nummulites_, com 19 cm de comprimento.

4.1 Morfologia dos Protozoários

O tamanho e forma desses organismos mostram considerável variação. Em geral, a célula individual dos protozoários representa um organismo completo. Como todas as células eucarióticas, a célula dos protozoários também consiste em citoplasma, separado do meio ambiente por um envelope especial, e em núcleo.

4.1.1 Citoplasma

É um material mais ou menos homogêneo, composto de moléculas protéicas globulosas, frouxamente reunidas para formar uma moldura molecular tridimensional. Embebidas em seu interior, encontram-se várias estruturas que dão aos protozoários seu aspecto característico.

As fibrilas protéicas submicroscópicas (feixes fibrilares, mionemas, microtúbulos) são grupos de fibrilas paralelos existentes no citoplasma. A contratibilidade dos protozoários é devida à presença dessas fibrilas.

Em diversas formas de protozoários, pigmentos se difundem no citoplasma. Suas tonalidades são numerosas: verdes, castanhas, azuis, púrpuras ou rôseas.

Na maioria desses organismos, o citoplasma diferencia-se em **ectoplasma** e **endoplasma**. O ectoplasma é mais semelhante a um gel, enquanto o endoplasma é mais volumoso e fluido. A mudança de uma camada para outra é gradual. As estruturas celulares acham-se no endoplasma.

Como outras células eucarióticas, os protozoários possuem sistemas membranosos no citoplasma. Estes formam uma rede mais ou menos contínua de canais e de lacunas, dando origem ao retículo endoplasmático da célula. Outras estruturas do citoplasma incluem os ribosossomos, os complexos de Golgi, as mitocôndrias, os cinetossomas ou blefaroplastos (corpúsculos basais intracitoplasmáticos dos cílios ou flagelos), vacúolos nutritivos, vacúolos contráteis e núcleo.

4.1.2 Núcleo

Cada protozoário tem, ao menos, um núcleo eucariótico. Muitos protozoários contudo, possuem núcleos múltiplos (quase todos os ciliados), durante a maior parte de seus ciclos vitais. Os núcleos são de várias formas, tamanhos e estruturas. Em diversas espécies cada indivíduo tem 2 núcleos similares. Nos ciliados, dois núcleos diferentes: um grande (macronúcleo) e um pequeno (micronúcleo). Os macronúcleos controlam as atividades metabólicas e os processos de regeneração; os micronúcleos estão relacionados com os processos de reprodução.
4.1.3 Envelope Celular
O citoplasma, com suas diversas estruturas, está separado do ambiente externo pelo envelope celular. Este funciona não somente na proteção, mas também no controle das trocas de substâncias e é o sítio de percepção de estímulos químicos e mecânicos, servindo igualmente, para estabelecer contatos com outras células. Este envelope contém, às vezes, uma película, intimamente aposta à membrana celular. Sua espessura, sua flexibilidade e seu número de camadas são variáveis.

Em sua forma mais simples, a película é a membrana celular ou plasmalema. A película dos ciliados é espessa e, frequentemente, enrijecida e estruturada de modos diversos. Pode haver até mesmo a presença de fileiras de plaquetas elevadas e de espessamentos modulares.

Existem outros tipos de membranas protetoras, produzidas pelos protozoários, que são coberturas externas à película. São elas carapaças, testas, lóricas e cistos. Tais envelopes consistem de materiais diferentes e, em geral, possuem uma matriz orgânica, reforçada pela incrustação de substâncias, tais como carbonato de cálcio ou sílica.

Deve-se lembrar que os cistos são apenas envoltórios temporários. Muitos protozoários podem encistar-se e, dessa maneira, aumentar sua proteção contra agressões externas. Em alguns casos, a escassez de alimentos e a dessecação favorecem o encistamento. Em outros, a reprodução é regularmente ligada com a formação de cistos. As fases desenvolvidas das espécies parasitas são, muitas vezes, transmitidas a um outro hospedeiro envelopadas por um cisto resistente.

4.1.4 Locomoção
Os protozoários podem se locomover por meio de três estruturas: pseudópodos, flagelos e cílios. Além disso, algumas espécies podem desenvolver um movimento de deslizamento por flexões do corpo, sem o uso de estruturas especializadas.

Pseudópodos: um pseudópodo é uma projeção temporária de parte do citoplasma daqueles protozoários que não apresentam uma película rígida. É utilizado pelas amebas (sarcodina) para locomoção e captura de alimentos. O movimento amebóide pode também ser verificado em células de outros organismos, como por exemplo nos glóbulos brancos do sangue humano.

Flagelos e Cílios: O flagelo é uma extensão filamentososa do citoplasma, extremamente fina. Como regra geral, o número de flagelos presentes num indivíduo varia de um a oito (1 ou 2 são os números mais freqüentes). O flagelo se compõe de duas partes: um filamento elástico, chamado axonema, e a bainha citoplasmática contrátil que envolve o axonema.

Em certos mastigóforas parasitas, como o gênero Trypanosoma, há uma delicada membrana que se estende do lado do corpo, com um flagelo em sua margem externa. Quando esta membrana vibra, mostra um movimento ondulante típico, chamando-se, por isso, de membrana ondulante.

Os cílios, além de sua função locomotora, também auxiliam na ingestão de alimentos e servem, muitas vezes, como organelas tácteis. São extensões celulares finas, curtas e filiformes, podendo ser o comprimento uniforme ou não. De modo geral, os cílios se dispõem em fileiras longitudinalais, oblíquas ou espiraladas, inseridos em arestas ou em sulcos.

A microscopia eletrônica mostrou a existência dos mesmos desenhos básicos da fina estrutura flagelar e ciliar, presente em todas as células eucarióticas. Os cortes mostram duas fibras centrais e nove fibras duplas periféricas (estrutura "9+2"), envolvidas por uma membrana contínua como película.
4.2 Processo Reprodutivo dos Protozoários

Os protozoários reproduzem-se por diversos processos sexuados e assexuados. A reprodução assexuada ocorre por simples divisão, que pode ser igual ou desigual, originando células filhas iguais ou não, respectivamente. Se houver mais de duas células filhas, a divisão será múltipla. A gemulação é uma variante da divisão celular desigual.

Para lembrar, a gemulação é a formação de uma ou mais células menores, a partir de uma célula original. Em seu uso estrito em protozoologia, esta denominação deve ser reservada para aqueles casos onde a célula-mãe permanece séssil e libera uma ou mais células-filhas natatórias. Estas diferem da célula-mãe, não apenas quanto ao seu menor grau de diferenciação, mas também porque possuem organelas locomotoras especiais.

Dois processos relacionados devem ser mencionados: plasmotomia e esquizogonia. No primeiro deles, o corpo multinucleado de um protozoário se divide em dois ou mais indivíduos multinucleados pequenos, cujos núcleos maternos são distribuídos ao acaso entre eles. Na esquizogonia, o organismo multinucleado dá origem, em curto espaço de tempo, a muitas gêmeulas mononucleadas sendo abandonada, usualmente, uma massa de protoplasma anucleada.

Vários tipos de reprodução sexuada foram observados entre os protozoários. Um deles é a fusão sexuada de dois gametas entre os protozoários. A fusão sexuada de dois gametas (singamia ou gametogamia) ocorre em diversos grupos de protozoários. A conjugação, geralmente uma união temporária de dois indivíduos para troca de material nuclear, é observada exclusivamente em Ciliophora. Após a troca de núcleos, os conjugantes se separam e cada um dá origem à sua respectiva progênie por fissão ou gemulação. Alguns ciliados porém, demonstram "total conjugação", com fusão completa dos dois organismos.

Regeneração: a capacidade de regenerar partes perdidas é característica de todos os protozoários, desde formas mais simples até aqueles que apresentam estruturas altamente complexas. Quando um protozoário é cortado em dois, a porção nucleada se regenera, a anucleada não. Nos ciliados, a macronúcleo sozinho (ou mesmo parte dele) é suficiente para assegurar esse processo.

4.3 Características dos Filos

4.3.1 Sarcodíneos

As amebas são as principais representantes dos sarcodíneos e seu nome deriva da palavra grega amoibe, que significa "modificação", já que suas formas estão em constante modificação. Exemplo típico é fornecido pela Amoeba proteus, cuja célula chega a atingir 0,5 mm de diâmetro.

Como já foi dito, a locomoção das amebas se dá pela emissão de pseudopôdios ("falsos pés") que são também empregados na captura de alimentos. As amebas alimentam-se por ingestão de pequenos protozoários e algas, e também de protoplasma morto. Ao perceberem a presença de alimento, elas deslocam-se em direção a ele, englobando-o com os pseudopôdios. Esse processo de ingestão de alimento é denominado fagocitose.

O alimento é incorporado pela célula, juntamente com um pouco de água, ficando no interior de um vacúulo alimentar (fagossomo). Este recebe enzimas digestivas armazenadas em organelas denominadas lisossomos, passando a ser chamado de vacúulo digestivo, onde o alimento será digerido. Devido às correntes citoplasmáticas, o vacúulo digestivo é deslocado no interior da célula, distribuindo o alimento digerido. Os restos não aproveitáveis da digestão são armazenados no vacúulo, que passa a ser chamado vacúulo residual, até serem eliminados da célula através da clasmocitose ou "defecação celular" (é a eliminação da escória).
As células dos protozoários de água doce são hipertônicas em relação ao meio externo. Nesse caso ocorre entrada de água na célula por osmose. Como a diferença entre a concentração do suco celular e da água doce é suficiente para saturar a célula e rompê-la, as amebas e outros protozoários de água doce desenvolveram organelas citoplasmáticas denominadas *vacúolos pulsáteis* ou *contráteis* que, de tempos em tempos, eliminam o excesso de água que penetra na célula.

Nos protozoários de água salgada geralmente não há vacúolos pulsáteis, pois a concentração do meio externo é semelhante à do citoplasma das células.

O tipo de reprodução mais comum entre os sarcodíneos é a divisão binária. Nesse tipo de reprodução assexuada, a célula divide-se ao meio, dando origem a duas células-filhas com a mesma informação genética da célula-mãe.

A figura 2 mostra um esquema de uma ameba.

![Figura 2: Esquema de uma ameba.](image)

1. Plasmalema (membrana celular)
2. Capuz hialino
3. Camada hialina (ectoplasma)
4. Endoplasma - plasmagel
5. Endoplasma - plasmassol
6. Cristal
7. Vacúolo contrátil
8. Vacúolos digestivos
9. Núcleo
10. Pseudópodo
11. Região de solação
12. Região de gelação

4.3.1.1 Diversidade de sarcodíneos

Os representantes mais comuns de sarcodíneos pertencem a dois grupos principais de organismos: o das amebas e dos foraminíferos.

O grupo das amebas inclui espécies de vida livre, existem algumas que possuem uma carapaça revestindo externamente a célula: estas são denominadas *tecamebas*. As tecamebas ocorrem em água doce e em solos úmidos e suas carapaças podem ser secretadas pela
própria célula ou formadas por pequenas partículas que se aglutinam ao redor de suas células.

Entre as espécies que podem ocorrer no corpo do homem, algumas são parasitas, outras, no entanto, não o são. É o caso da *Entamoeba gengivalis*, que ocorre na gengiva, e o da *Entamoeba coli*, que ocorre no intestino.

Os foraminíferos são sarcodíneos principalmente marinhos, que possuem carapaça secretada ou aglutinada, formada por várias câmaras. A carapaça pode ser formada de carbonato de cálcio secretado pelo organismo ou por grãos de areia que se aglutinam ao redor da célula. A forma da carapaça varia muito de espécie para espécie, sendo que muitas lembram pequenos caracóis. Os foraminíferos são muito importantes nas pesquisas sobre prospecção de petróleo, pois constituem um grupo com muitos representantes fósseis, bons indicadores da presença de combustível fóssil. A figura 3 mostra alguns representantes dos sarcodíneos.

4.3.1.2 Sarcodíneos Parasitas do Homem

Dentre os sarcodíneos, apenas no grupo das amebas existem espécies parasitas, destacando-se duas que parasitam o intestino do homem: a *Entamoeba histolytica* e a *Endolimax nana*.

A *Entamoeba histolytica* causa a disenteria amebiana (amebiase), caracterizada por diarreias mucosas e fezes sanguinolentas.

Indivíduos dessa espécie têm a capacidade de se encistar, sendo liberados nesta forma pelas fezes do homem. Estes cistos são resistentes, permitindo a manutenção do parasita por longos períodos fora do corpo do hospedeiro. Ao comer frutas ou verduras mal lavadas ou beber água contaminada, o homem pode ingerir esses cistos, que então se rompem liberando os protozoários e que se instalam na mucosa intestinal causando lesões. A profilaxia dessa doença deve ser feita através de medidas de saneamento básico e higiênicas.

Endolimax nana é um parasita intestinal que provoca dores abdominais, diarreia, vômitos e fadiga. O parasita é adquirido pela ingestão de alimentos contaminados.

Figura 3: Esquemas de representantes de grupos de sarcodíneos: heliozoário (a), foraminífero (b), ameba (c,d,e) e tecameba (f).
4.3.2 Mastigophora ou Flagelados

Os protozoários flagelados são divididos em dois grupos: os fitoflagelados, que geralmente contêm clorofila e são fotossintéticos e que, normalmente são estudados junto com as algas, e os zooflagelados que não possuem clorofila e realizam sua nutrição de modo heterotrófico. Todos os componentes da classe apresentam um ou mais flagelos.

Os flagelados são também chamados de Mastigóforos (mastiχ = flagelo; phorοs = portar, ter) e têm estrutura interna semelhante a dos flagelos das células dos demais eucariontes. Eles correspondem a centríolos modificados e alongados, e diferem dos flagelos dos procariotos, que são formados só por proteínas.

A reprodução dos flagelados é, na maioria dos casos assexuada por divisão binária, longitudinal.

Os flagelados podem ter vida livre, alguns locomovem-se livremente na água, utilizando-se dos flagelos, enquanto outros vivem fixos ao substrato por um pedúnculo, empregando o flagelo apenas na captura de alimento. Alguns flagelados possuem um "colarinho" ao redor da base do flagelo e são, por isso, denominados coanoflagelados. Existem coanoflagelados coloniais que formam colônias fixas ao substrato por um pedúnculo e os que formam colônias livres, imersas em matriz gelatinosa.

A figura 4 mostra alguns representantes dos flagelados e a figura 5 mostra o esquema de uma euglena.

A figura 5: Alguns representantes dos flagelados.

4.3.2.1 Flagelados parasitas do Homem

Entre esses, destacam-se os gêneros *Trichomonas*, *Giardia*, *Leishmania* e *Trypanosoma*, por serem muito comuns.

Trichomonas vaginalis é parasita do sistema genital feminino e masculino, produzindo infecção denominada tricomoníase. Sua transmissão ocorre através do contato sexual ou,
incomumente, da utilização de sanitários sem condições higiênicas.

Leishmania brasiliensis é um flagelado parasita que provoca ulceração das mucosas, doença popularmente conhecida como *úlcera-de-bauru* ou *leishmaniose*. A moléstia determina ulcerações progressivas cutâneas que, por vezes, alastram-se para as mucosas da boca, nariz e faringe. A transmissão ao homem é feita pela picada do inseto *Phlebotomus intermedius*, conhecido como "mosquito-palha" ou "birigüi". Há tratamento para essa afeção e a profilaxia, tal como na malária, consiste essencialmente em combater o mosquito.

Giardia lamblia (ou *G. intestinalis*) parasita o intestino e pode causar disenteria, denominada giardíase. A transmissão se dá pela ingestão de alimentos ou água contaminados. Instala-se no jejuno-fléo e, frequentemente, pode se instalar na vesícula biliar, tornando o tratamento bem mais difícil. Os cuidados com saneamento básico constituem os principais recursos na prevenção contra a giardíase.

Figura 4: Anatomia da Euglena.
No Brasil, uma das parasitoses mais importantes é a doença de Chagas, causada pelo *Trypanosoma cruzi* (fig. 6.a). A doença de Chagas (nome dado em homenagem a Carlos Chagas, pesquisador brasileiro que estudou e descobriu o ciclo de doença) é extremamente grave e não tem cura. Calcula-se que somente na América do Sul, aproximadamente 7 milhões de pessoas sofrem dessa moléstia, que costuma ser chamada de "doença dos mega" (grande), em virtude de determinar hipertrofia e flacidez na região atingida (megacolo, megaesôfago, etc.). A doença de Chagas apresenta certa seletividade pela musculatura cardíaca e como conseqüências disfunções que podem levar a morte, embora, às vezes, a longo prazo.

Figura 6.a: *T. cruzi*, forma tripomastigota entre eritrócitos.

O agente etiológico a doença é o *T. cruzi* e o vetor é um inseto hematofago do grupo dos triatomídeos, popularmente conhecido como barbeiro ou chupança (*Triatoma infestans, Panstrongylus megistus* e outras espécies).

Portanto, no ciclo de vida do *Trypanosoma* existem dois hospedeiros: o homem (ou outro mamífero) e o barbeiro. O modo mais eficiente de erradicação da doença de Chagas é eliminar o vetor (barbeiro). A figura 6b mostra um esquema do ciclo de vida do *T. cruzi*.

Outras espécies importantes deste grupo são o *Trypanosoma gambiensis* e o *Trypanosoma rhodesiense* transmitidos pela mosca tsé-tsé e agentes etiológicos da doença do sono africano. O *Trypanosoma equiperdum*, por exemplo, infecta apenas os eqüinos, sendo transmitido por via sexual.

4.3.3 Os ciliados

Os ciliados são protozoários que possuem cílios, estruturas utilizadas na locomoção e captura de alimento. Os cílios, que também ocorrem em algumas células eucariotas multicelulares, têm a mesma estrutura interna dos flagelos, diferindo destes com relação ao comprimento (os cílios são bem mais curtos), número e batimento. *Paramecium caudatum*, um protozoário de vida livre, é um exemplo de ciliado bastante comum que aparece em açudes e lagos de água doce (figura 7).

Os paramécios são facilmente distinguidos por sua forma típica, semelhante à sola de um chinelo. A porção anterior (frontal) da célula é arredondada e a porção posterior ligeiramente afilada. A camada mais externa da célula é menos flexível que a das amebas dando uma forma mais constante à célula. Toda a célula é coberta por pequenas projeções filiformes (cílios), que além de órgãos de locomoção, servem também para orientar os alimentos em direção ao poro bucal.
Ciclo de Vida do *Trypanosoma cruzi*

o inseto vetor pica um indivíduo e
deposita sobre sua pele.

Figura 6b: Ciclo de vida do *T. cruzi.*

Formas tripomastigotas metacíclicas são
esfregadas sobre a picada ou sobre
os olhos.

Formas tripomastigotas entram nas células
e reproduzem-se como amastigotas.

o parasita se reproduz assexuadamente no
trato digestivo do inseto. Formas tripomastigotas
metacíclicas migram para o reto.

o vetor é infectado quando suga o
sangue de um indivíduo contaminado
contendo a forma tripomastigota do parasita

as células morrem e liberam as formas
amastigotas. Estas infectam novas células e,
algumas se transformam em forma
tripomastigota, permanecendo assim
na corrente sanguínea.
Figura 7: Anatomia de um protozoário ciliado, *Paramecium caudatum*.

No paramécio, a ingestão de alimento ocorre através de uma reentrância bem definida e de localização constante na célula, denominada **sulco oral** ou, ainda, **funil bucal**. O alimento conduzido pelo batimento ciliar coordenado, entrou nessa reentrância, que também é ciliada, passa pelo **citóstoma** (*cito* = célula, *stoma* = boca), localizado no final do sulco oral, e penetra na **citofaringe**, estrutura tubular que possui um tufo de cílios.

O alimento é impulsionando para o final da citofaringe, no interior do endoplasma. Nessa região forma-se um **vacúolo digestivo**, que se desprende e passa a circular pelo interior da célula movido pelas correntes citoplasmáticas, distribuindo o alimento digerido. Os restos não aproveitáveis são eliminados através de uma região específica da célula, denominada **citopígeo** ou **citoprocto** ou, ainda, **poro anal**.

Como nas amebas e em outros microrganismos unicelulares, o oxigênio ingressa na célula através da membrana celular, enquanto o CO$_2$ se difunde para fora.

Os líquidos usados são coletados nos vacúolos contráteis, que têm posições fixas nos paramécios, em vez de aparecerem em qualquer lugar da célula, como nas amebas. Outra
característica dos paramécios, e ciliados em geral, é a presença de 2 tipos distintos de núcleo: o micro e macronúcleo, já comentado anteriormente. Nos paramécios existem um macro e um micronúcleo por célula, mas em outras espécies de ciliados, o número de micronúcleos por célula pode variar, existindo, no entanto, sempre um macronúcleo.

A reprodução assexuada se dá por divisão ou fissão binária. O macro e micronúcleo dividem-se e ocorre a formação de um sulco transversal, separando a célula ao meio.

O processo sexuado de reprodução dos ciliados é a conjugação. Nesse processo ocorre a união temporária de dois indivíduos seguida de degeneração do macronúcleo, divisão meiótica do micronúcleo, troca de micronúcleos entre os indivíduos conjugantes e fusão do micronúcleo que migrou com o micronúcleo estacionário. O micronúcleo resultante da fusão sofre mitose e os indivíduos conjugantes separam-se, cada um desses sofre um número de divisões celulares, que varia de espécie para espécie, restabelecendo o número de núcleos típico da espécie. O macronúcleo surge por diferenciação do micronúcleo.

4.3.3.1 Diversidade dos Ciliados

Os ciliados podem apresentar cílios recobrindo toda a célula, como ocorre no gênero *Paramecium*, ou apenas em algumas regiões.

A maioria dos representantes desse filo é aquática, vivendo em água doce ou salgada. Há espécies que nadam livremente, outras que vivem fixas ao substrato por um pedúnculo e outras que formam colônias.

Figura 8: Esquemas de representantes de grupos dos ciliados: suctórios (a, b), peritríqueo (c) e hipotríqueo (d).
Um grupo de ciliados bastante diferente é o dos **suctórios**. Esses organismos possuem cílios apenas nas fases iniciais do desenvolvimento, quando adultos, fixam-se ao substrato, perdem os cílios e desenvolvem estruturas especiais denominadas tentáculos, que são utilizados na captura de alimentos. As principais presas dos suctórios são outros ciliados que, ao serem tocados pelos tentáculos ficam imobilizados pelos tricocistos (estruturas ovais ou em forma de bastonetes que atuam como defesa). Então, o citoplasma da presa é sugado pelos tentáculos e digerido em vacúolos digestivos no interior do corpo do suctório.

Além dos ciliados de vida livre, há formas parasitas, como *Balantidium coli*, que se aloja no intestino do homem. Este protozoário é adquirido ao se ingerir água contaminada.

A figura 8 (página anterior) mostra alguns representantes dos ciliados.

4.3.4 Esporozoários

São protozoários parasitas caracterizados pela ausência de estruturas empregadas na locomoção nas formas adultas. Obtém alimento por absorção direta dos nutrientes dos organismos que parasitam. Muitas espécies têm ciclos vitais complicados, com algumas fases se desenvolvendo num hospedeiro e outras em hospedeiros diferentes. Pode ocorrer uma fase reprodutiva sexuada durante o ciclo vital. A reprodução assexuada ocorre por divisão múltipla, ou **esquizogonia**. Para lembrar, a divisão múltipla é aquela onde a célula inicial sofre várias divisões mitóticas sem que o citoplasma se divida. Quando as divisões nucleares cessam, uma membrana plasmática circunda cada núcleo juntamente com parte do protoplasma da célula inicial. Formam-se assim, várias células-filhas com um só núcleo de pequeno tamanho que são, então, liberadas.

A **esporogonia** é um tipo de reprodução, característica dos esporozoários, tendo sido responsável pelo nome do grupo. Na esporogonia formam-se várias células que lebram esporos, por isso denominadas **esporozoitos**. Esse tipo de reprodução ocorre logo após a formação do zigoto, durante o ciclo reprodutivo dos esporozoários. O zigoto geralmente sofre um encistamento e, invariavelmente, uma divisão meiótica, originando quatro esporozoitos com metade do número cromossômico do zigoto. Por mitoses sucessivas, essas células multiplicam-se originando muitos outros esporozoitos, que são finalmente liberados do cisto.

4.3.4.1 O gênero Plasmodium

Em relação ao homem, os esporozoários mais importantes são os do gênero *Plasmodium*, responsáveis pela malária ou maleita.

A malária afeta milhões de pessoas no mundo inteiro, mas em especial em regiões tropicais. Estima-se que anualmente ocorram cerca de 100 milhões de novos casos, dos quais aproximadamente um milhão são fatais.

A transmissão do agente causador da malária ao homem é feita por um mosquito do gênero *Anopheles*. É importante ressaltar que não são todas as espécies de *Anopheles* que são boas transmissoras, e sim quatro delas: *A. darlingi*, no interior do país; *A. aquasalis*, na região costeira do país, de SP para o Norte; *A. cruzi* e *A. bellator*, na região Sul do país.

Ao picar uma pessoa saudável, o inseto contaminado introduz o protozoário, na forma de esporozoitos, iniciando o ciclo do parasita no interior do corpo do indivíduo. Os esporozoitos caem na corrente sanguínea e são levados até as células do fígado, no interior das quais se reproduzem por esquizogonia, originando vários indivíduos, chamados de **trofozoitos**. Esses rompem as células hepáticas, podendo reinfectar novas células ou voltar a corrente sanguínea e penetrar novamente nas hemácias. Nessas células, os trofozoitos adquirem inicialmente a forma de anel e sofrem nova esquizogonia, dando origem a muitos indivíduos, agora chamados **merozoitos**. As hemácias rompem-se e os merozoitos são liberados para infectar novos glóbulos vermelhos, dividindo-se por esquizogonia. Em alguns casos, os
merozoítos não se dividem dentro da hemácia, mas passam por um processo de diferenciação, originando gametócitos.

Ao picar um indivíduo doente, o mosquito suga hemácias normais e também aquelas que contêm os gametócitos, iniciando o ciclo do Plasmodium no corpo do inseto. Uma vez no estômago do mosquito, os gametócitos diferenciam-se em gametas masculinos e femininos e em seguida há a fecundação. O zigoto formado fixa-se na parede do estômago formando um cisto, no interior do qual ocorre a esporogonia: o zigoto sofre meiose e as células haplóides resultantes multiplicam-se várias vezes, dando origem a muitos esporozoítos que rompem o cisto, são liberados e penetram na glândula salivar do inseto. Esse, ao picar o indivíduo sadio, reinicia-se o ciclo (figura 9).

Figura 9: Ciclo de vida do Plasmodium no homem e no mosquito.
A doença causada por *Plasmodium* é caracterizada por acessos febris característicos, dependendo da espécie infectante. As três espécies que ocorrem no Brasil possuem patogenicidade diferente, e apenas o *P. falciparum* é capaz de levar o paciente à morte. Além disso, essa espécie possui linhagens resistentes aos medicamentos usuais. As outras duas espécies, embora dificilmente levem o paciente à morte, provocam acessos maláricos e anemia capazes de reduzir sua economia física e capacidade de trabalho.

- *Plasmodium vivax*: acessos febris de 48 em 48 horas (febre terçã benigna, ocorre de 3 em 3 dias).
- *Plasmodium malariae*: acessos febris de 72 em 72 horas (febre quartã benigna, ocorre de 4 em 4 dias).
- *Plasmodium falciparum*: acessos febris irregulares, de 36 a 48 horas de intervalo (febre terçã maligna).

É importante ressalvar que o ciclo de vida do plasmódio só se completa se houver dois hospedeiros; *Anopheles* e o homem. No mosquito ocorre a reprodução sexuada e por isso denomina-se o inseto de hospedeiro definitivo. No homem ocorre apenas reprodução assexuada e esse hospedeiro é por isso conhecido como hospedeiro intermediário.

A profilaxia da malária pode ser conseguida erradicando o mosquito transmissor e tratando os indivíduos portadores da doença.

4.3.4.2 *Toxoplasma gondii*

Toxoplasma gondii é um protozoário de distribuição geográfica mundial, podendo atingir até 60% da população em determinados países; no entanto, os casos de doença são menos freqüentes. É uma zoonose muito freqüente em várias espécies de mamíferos e aves. O gato e outros felídeos são os hospedeiros definitivos ou completos e o homem, entre outros animais, pode ser o hospedeiro intermediário ou incompleto.

Este esporozoário, *Toxoplasma gondii*, é o agente causador da toxoplasmose, uma infecção causada por contágio indireto, pois, ainda que não haja vetores ou transmissores para a contaminação, ela não se faz diretamente de um indivíduo doente para outro sadio. O parasita, durante seu ciclo vital, passa por um estágio de reprodução por esporogonia, no hospedeiro definitivo (gatos e outros felídeos não imunes), e por uma fase de reprodução assexuada (esquizogonia), nos tecidos de vários hospedeiros, inclusive de gatos e do homem.

Vários tecidos e células (exceto hemácias) e líquidos orgânicos como saliva, leite, esperma etc, podem ser o hábitat do *T. gondii*. Nos felídeos não imunes podem ser encontradas as formas do ciclo sexuado no epitélio intestinal e também no meio exterior, junto às fezes (sendo esta a forma resistente, dita oocisto).

A contaminação pode se dar através ingestão de oocistos presentes em jardins, alimentos ou objetos contaminados; ingestão de cistos presentes em carnes mal cozidas, especialmente de porco e carneiro; e ainda a transmissão congênita ou placentária.

A moléstia se manifesta com febre constante, exantema (manchas puntiformes avermelhadas na pele), gânglios aumentados, aumento do fígado e do baço, podendo complicar com pneumonia e encefalite. Na forma congênita da toxoplasmose, na qual a mulher grávida portadora da doença serve de meio de contaminação, o parasita atravessa a barreira placentária e atinge o feto, provocando lesões oculares graves, cegueira ou lesões no crânio e encéfalo, o que pode causar aborto, ou parto prematuro.

Ainda não existe uma droga eficaz contra a toxoplasmose. Os medicamentos utilizados atuam contra as formas proliferativas, mas não contra os cistos. Como a maioria das pessoas que têm sorologia positiva não tem a doença e as drogas empregadas são tóxicas em dosagens prolongadas, recomenda-se tratar apenas os casos agudos, a toxoplasmose ocular e os indivíduos imunodeficientes contaminados.
5. O Reino Animal

O Reino Animal acha-se genericamente dividido em dois grandes grupos: invertebrados e vertebrados. Embora a maioria das pessoas pense em um vertebrado quando se fala em animal, esse grupo representa apenas 5% de cerca de 1,5 milhão de espécies animais descritas. Mais curioso ainda é pensar que 95% das espécies animais restantes são agrupadas por uma característica que elas não possuem, ou seja, a ausência de espinha dorsal!

Assim, a divisão do Reino Animal em vertebrados e invertebrados é artificial e reflete uma inclinação humana histórica em favor dos próprios “parentes” da humanidade. Essa característica de um único subfilo de animais é utilizada como base para a separação de todo o reino Animal. Poderiam se dividir bem logicamente os animais em artrópodos e não artrópodos, por exemplo, pois pelo menos seria numericamente sustentável, já que aproximadamente 85% de todos os animais são artrópodos.

Mesmo cientes da artificialidade dessa divisão iniciaremos nosso estudo do Reino Animal pelos invertebrados mais primitivos para, assim, compreender a ascendência dos vertebrados.

a) Características Gerais dos Animais

Como discutido no início, o Reino Animal foi definido segundo características comuns a todos os animais: organismos eucariotos, multicelulares, heterotróficos e que obtém seus alimentos por ingestão de nutrientes do meio.

Mesmo dentro de critérios tão amplos, podemos encontrar exceções, em função de fatores diversos, como a adaptação de organismos a meios de vida especiais. É o que ocorre por exemplo com certos endoparasitas que perderam a capacidade de ingestão de nutrientes, passando a obtê-los por absorção direta.

Algumas características gerais dos grupos (táxons) situados logo abaixo do reino, os filos, são muito utilizadas na tentativa de se entender a filogenia do Reino Animal. Essas características, frequentemente encontradas durante o desenvolvimento embrionário e não apenas no organismo adulto são: níveis de organização do corpo, simetria, disposição das estruturas relacionadas com a digestão, número de folhetos germinativos e presença de celoma.

Níveis de Organização do Corpo

Todos os animais iniciam seu desenvolvimento a partir de uma única célula, a célula-ovo ou zigoto. Essa célula sofre várias divisões mitóticas, dando origem a organismos multicelulares. Alguns animais desenvolvem-se até um conjunto de células, com organização tissular muito restrita, enquanto a maioria atinge níveis de organização superior a tecidos, tais como órgãos e sistemas. Pode-se encontrar em muitos livros a seguinte subdivisão do Reino Animal, baseada na complexidade tissular: Parazoa - representado pelos Porífera (esponjas) e Eumetazoa - representado por todos os demais animais.

Simetria

Simetria é a divisão imaginária do corpo de um organismo em metades especulares. Quanto a esse caráter, os animais podem ter simetria radial, quando há mais que um plano de simetria, ou bilateral, quando existe um único plano de simetria possível a ser traçado (figura 10). Existem, no entanto, animais cujo corpo não pode ser dividido em metades
especulares. Nesses casos, não há plano de simetria e fala-se, então, em animais assimétricos.

A maioria dos animais possuem o mesmo tipo de simetria na fase embrionária e adulta. Porém, alguns têm um tipo de simetria na fase embrionária e outro na fase adulta, sendo as mudanças geralmente associadas a adaptações dos adultos a modos de vida especiais. A simetria observada no embrião é denominada **primária** e no adulto, **secundária**, sendo que é a simetria primária que fornece indícios da estrutura real do corpo do animal, sob o ponto de vista taxonômico-evolutivo.

Os animais com simetria primária radial são chamados **radiados** e os com simetria primária bilateral, **bilatérias**. São radiados os poríferos e cnidários e bilatéria todos os demais (figura 11).

Disposição das estruturas relacionadas à digestão

Existem três tipos básicos de disposição: **rede de canais**, **tubo com uma abertura** e **tubo com duas aberturas**.

A disposição em rede de canais é exclusiva das esponjas. Há células flageladas que estabelecem correntes de água através do corpo do animal. A água entra por pequenos poros na parede do corpo do animal e sai por uma abertura única, chamada **ósculo**, transportando partículas alimentares. Não há tubo digestivo, a digestão se dá intracelularmente.

A presença de um tubo digestivo já pode ser verificada a partir dos cnidários. A disposição em tubo ou saco aberto em um só ponto é típica dos cnidários e platelmintos. Nesses há uma abertura única que funciona como boca e ânus e por isso dizemos que o trato digestivo é **incompleto**.

![Figura 10: Planos de simetria](image-url)
Figura 11: Animais radiados e bilatérias.

A disposição em tubo com duas aberturas (trato digestivo **completo**) ocorre nos demais bilatérias. No decorrer do desenvolvimento embrionário, esse tubo começa com um saco aberto em um só ponto; mais tarde, esse saco se alonga e se forma outra abertura, geralmente no extremo oposto à primeira. Uma dessas aberturas desenvolve-se em boca e a outra em ânus. A passagem de alimento estabelece-se num só sentido: da boca para o ânus. No tubo que surge entre esses dois orifícios ocorre a diferenciação de regiões com funções específicas (faringe, esôfago, estômago e intestino).

Podemos distinguir dois grandes grupos entre os eumetazoários, com relação ao desenvolvimento do tubo digestivo: **protostômios** e **deuterostômios** (figura 12). Nos protostômios, a primeira abertura do tubo digestivo, surgida durante o desenvolvimento embrionário, diferencia-se em boca e, nos deuterostômios, em ânus. São protostômios os nemátodas, anelídeos, moluscos e artrópodes; são deuterostômios os equinodermos e cordados.

Figura 12: Esquema da origem da boca e do ânus nos metazoários.
Número de Folhetos Germinativos

Baseados no número de folhetos germinativos que surgem durante o desenvolvimento embrionário animal, podemos distinguir dois grandes grupos: os diplobásticos (ou diblásticos) e os triplobásticos (ou triblásticos). Os diplobásticos possuem dois folhetos germinativos: a ectoderme, mais externa, e a endoderme, mais interna. Os animais triplobásticos, além da ecto e endoderme, possuem ainda um terceiro folheto intermediário, a mesoderme. Somente os cnidários são diplobásticos.

Presença do Celoma

Celoma é a denominação para a cavidade interna do corpo que é totalmente delimitada pela mesoderme (peritônio). Entre os animais triplobásticos podemos distinguir os celomados, pseudocelomados e acelomados (figura 13).

![Figura 13](image-url)

Os celomados são aqueles que possuem celoma, enquanto os acelomados têm a mesoderme preenchendo totalmente o espaço entre a ecto e endoderme, não havendo formação de cavidade. Já os pseudocelomados possuem cavidade interna, mas essa é delimitada pela mesoderme e endoderme e, portanto, é chamada de pseudoceloma.

São acelomados os platelmintos e alguns asquelmintos; pseudocelomados os demais asquelmintos e celomados os demais eumetazoários triplobásticos.

Entre os celomados podemos distinguir dois grandes grupos, com base no tipo de desenvolvimento embrionário da mesoderme e do celoma. Num deles, a mesoderme origina-se a partir de células situadas ao redor da estrutura que dará origem ao tubo digestivo do adulto; são formadas várias células que depois se organizam formando uma membrana que delimita o celoma. O celoma assim formado chama-se esquizoceloma e os animais que o apresentam são denominados esquizocelomados.

A mesoderme e o celoma ainda podem se formar a partir de evaginações da endoderme, formando bolsas dispostas entre a ectoderme e endoderme. Essas bolsas se desprendem, havendo diferenciação de mesoderme e da cavidade celomática. Nesses casos o celoma é denominado enteroceloma, e os animais que o possuem, enterocelomados.
b) Origem e evolução dos eumetazoários

Baseando-se nas características acima discutidas, é possível tentar compreender a evolução dos animais. Uma hipótese aceita por muitos zoológos, mas não a única, é de que os animais surgiram provavelmente de protozoários flagelados coloniais, que teriam se especializado, aumentando a interdependência celular. Dessa maior especialização teriam surgido, de um lado, os parazoários e, de outro, os eumetazoários, que apresentam maior interdependência entre suas células, formando tecidos verdadeiros. Entre os eumetazoia, apenas os cnidários são diblásticos; os demais já apresentam três folhetos germinativos. O metazoário ancestral, que deu origem aos cnidários e platelmintos, provavelmente tinha simetria radial, mantida nos cnidários e modificada para simetria bilateral no ramo que originou os platelmintos. Esses são triblásticos acelomados e acredita-se que tenham dado origem aos pseudocelomados e celomados. Esses últimos teriam se especializado segundo duas linhas evolutivas principais: a dos esquizocelomados e a dos enterocelomados.

O esquema a seguir apresenta a provável filogenia dos animais (figura 14).

Figura 14: Esquema das prováveis relações filogenéticas entre os filos dos animais.
Os Invertebrados

Para aquele que estiver tentando estudar os invertebrados pela primeira vez, a tarefa pode parecer difícil, pois cada grupo tem suas peculiaridades estruturais (“design” de arquitetura exclusivos). Uma forma importante de se lidar com a diversidade animal consiste em compreender os princípios e padrões subjacentes que são repartidos pelos numerosos grupos de animais, permitindo que se unam grandes grupos de filos e que façam (ou prevejam) correlações entre o “design”, a função e o ambiente.

1 FILO PORIFERA (AS ESPONJAS) - do latim: porus=poro; ferre=possuir

1.1 Conceitos Gerais

São os mais primitivos entre os animais pluricelulares. Não estão presentes órgãos ou tecidos verdadeiros, apresentando suas células com considerável grau de independência. Todos os membros do Filo são sésseis (fixos) e demonstram poucos movimentos detectáveis. Essa combinação característica convenceu Aristóteles, Plínio e ainda outros naturalistas antigos de que as esponjas seriam plantas! De fato, não foi antes de 1765, quando se observou pela primeira vez as correntes internas de água, que a natureza animal das esponjas ficou claramente estabelecida. O nome “porífera” advém do fato desses seres possuírem poros por todo o corpo.

Exceto por 150 espécies de água doce, as esponjas são animais marinhos. Elas abundam em todos os mares sempre que houver rochas, conchas, madeira submersa ou coral para fornecer um substrato, necessário à fixação, embora existam espécies que vivem sobre areia ou lodo. A maioria prefere águas relativamente rasas, porém alguns grupos vivem em águas profundas.

1.2 Características

✓ Animais diblásticos;
✓ simetria radial ou assimétricos;
✓ vida solitária ou em colônias.

Os poríferos têm tamanho muito variável que é determinado, principalmente, pela estrutura interna destes organismos. Algumas esponjas exibem simetria radial, porém a maioria mostra-se irregular, exibindo padrões de crescimento que podem ser: massivos, eretos, incrustantes ou ramificados. O tipo de padrão de crescimento é influenciado pela velocidade das correntes de água, inclinação e natureza do substrato e disponibilidade de espaço. Assim, uma determinada espécie pode assumir diferentes padrões devido às diferentes situações ambientais, o que tem causado algumas confusões taxonômicas.

A maioria das espécies comumente encontradas exibem cores fortes, o que tem sido sugerido ser uma forma de proteção contra a radiação solar ou advertência.

Tomando-se como exemplo a estrutura mais simples de um porífero, pode-se estabelecer o seguinte padrão básico e tipos celulares presentes no grupo como um todo. A superfície desses organismos é perfurada por pequenas aberturas, os poros inalantes, de onde deriva o nome Porífera (portador de poros). Esses poros abrem-se em uma cavidade interior chamada de átrio (fig. 15.4). Esse, por sua vez, abre-se para o exterior através do ósculo (fig. 15.5), uma grande abertura localizada na parte superior do animal. O fluxo de água é portanto o seguinte:

meio externo→poro inalante→átrio→ósculo→meio externo
Esse fluxo é possibilitado pelos coanócitos, células que caracterizam o grupo e apresentam um flagelo circundado por um colarinho contrátil (fig. 15.9). Elas se localizam no lado interno do animal, revestindo a cavidade do átrio. Sua função básica é promover uma corrente de água dentro do átrio.

Figura 15: Anatomia de uma esponja tipo Sycon. Detalhes da estrutura da parede e do coanócito.

A parede do corpo é relativamente simples, sendo a superfície externa formada por células achatadas, os pinacócitos, os quais em conjunto, constituem a pinacoderme. Diferentemente do epitélio de outros animais, está ausente uma membrana basal e as
margens dos pinacócitos podem ser expandidas ou contraídas de forma que o animal pode aumentar ligeiramente de tamanho. Os pinacócitos basais secretam um material que fixa a esponja ao substrato.

Os poros são formados por um tipo celular chamado **porócito**, o qual tem a forma de um tubo que se estende desde a superfície externa até o átrio. A cavidade do tubo forma os poros inalantes, ou **óstios**, que podem se abrir ou fechar por contração. O porócito é derivado de um pinacócito através do surgimento de uma perfuração intracelular.

Abaixo da pinacoderme encontra-se uma camada chamada **meso-hilo** (ou mesênquima, fig. 15) que é constituída por uma matriz protéica gelatinosa contendo material esquelético e células amebóides, ou seja, células que possuem movimentos amebóide e são capazes de se diferenciar em outros tipos de células.

O esqueleto, que é relativamente complexo, fornece a estrutura de sustentação para as células vivas do animal. Assim, o esqueleto para todo o filo das esponjas, pode ser composto por espículas calcáreas, silicosas, fibras protêicas de esppongina ou então por uma combinação das duas últimas.

As espículas podem ser de várias formas, importantes para a identificação e classificação das espécies. Espículas monoxônias têm o formato de agulhas ou bastonetes podendo ser retas ou curvas, com extremidade afiladas ou ainda em forma de gancho.

Apesar das espículas frequentemente se projetarem através da pinacoderme, o esqueleto se localiza primariamente no meso-hilo. O arranjo das espículas é organizado com vários tipos que se combinam de maneira a formar grupos distintos. Elas podem estar fundidas ou apenas entrelaçadas, sendo que a organização em uma porção do corpo pode diferir da organização que se observa em outra porção do mesmo indivíduo.

O meso-hilo contém também fibras colágenas dispersas, mas algumas esponjas podem ter fibras grossas de colágeno chamadas esponginas (proteína fibrosa). Algumas esponjas são muito resistentes e têm uma consistência semelhante à borracha devido a quantidade de esppongina presente no esqueleto. As esponjas de banho possuem apenas esppongina no esqueleto.

Vários tipos de células amebóides estão presentes no meso-hilo. Células grandes com núcleos também grandes: os **arqueócitos** que são células fagocitárias que desempenham papel no processo da digestão. Os arqueócitos também são capazes de formar outros tipos celulares caso haja necessidade ao animal e são por isso chamadas totipotentes. Há também células fixas, chamadas **colêncitos** que ficam ancoradas por longas fitas citoplasmáticas e que são as responsáveis pelas secreção das fibras de colágeno dispersas. Pode haver, em algumas esponjas, células móveis que secretam tais fibras.

O esqueleto de espículas ou espongina é secretado pelos **esclerócitos amebóides** ou **espongiócitos**. Para secreção de uma única espícula numa esponja calcária podem estar envolvidos de um a vários esclerócitos, num processo relativamente complexo.

Do lado interno do meso-hilo, revestindo o átrio, encontra-se a camada dos coanócitos, os quais tem uma estrutura muito similar à dos protozoários coanoflagelados. De fato, muitos zoólogos crêem que as esponjas tiveram uma origem distinta a partir de coanoflagelados, não tendo desta forma, relação com outros metazoários. O coanócito é uma célula ovóide, com uma extremidade adjacente ao meso-hilo e a extremidade oposta projetada para dentro do átrio, apresentando esta um colarinho contrátil. São células responsáveis pelo movimento de água através da esponja e pela obtenção de alimento.

1.3 Tipos Morfológicos

A estrutura morfológica dos poríferos é bem peculiar, bem caracterizada por sistemas de canais para a circulação de água, numa forma que se relaciona com o caráter séssil (fixo)
do grupo.

Existem três tipos estruturais segundo este arranjo interno de canais:

Asconóides: tipo mais primitivo, não há canais. A área revestida por coanócitos é reduzida e ocorre um grande âtrio. O fluxo de água pode ser lento, uma vez que o âtrio é grande e contém água demais para que possa ser levada rapidamente através do ósculo. Quanto maior a esponja, mais intenso é o problema do movimento de água. O aumento do âtrio não é acompanhado por um aumento suficiente da camada de coanócitos para superar o problema. Assim, as esponjas tipo Ascon são invariavelmente pequenas (figura 16).

Esses problemas de fluxo de água e área de superfície das esponjas foram superados durante sua evolução através do dobramento da parede do corpo e redução do âtrio. As dobras aumentaram a superfície da camada de coanócitos enquanto a redução do âtrio diminuiu o volume de água circulante. O resultado final dessas mudanças é uma circulação de água muito maior e mais eficiente através do corpo. Com isso é possível um grande aumento de tamanho.

As esponjas que apresentam os primeiros sinais de dobramento do corpo são as siconóides ou tipo Sycon (figura 15). Nessas, a parede do corpo tornou-se dobrada horizontalmente formando protuberâncias digitiformes. Esse tipo de desenvolvimento produz bolsas externas estendendo-se para dentro a partir do exterior e evaginações que se estendem para fora a partir do âtrio.

Nesse tipo mais evoluido de esponja, os coanócitos não mais revestem o âtrio, mas ficam confinados às evaginações as quais são chamadas canais radiais ou flagelados. As invaginações correspondentes da pinacoderme chamam-se canais aferentes. Os dois canais se comunicam através de aberturas, equivalentes aos poros das esponjas asconóides.

Leuconóides: O mais alto grau de dobramento da parede do corpo ocorre neste tipo de esponja (figura 16). Os canais flagelados sofrem evaginações de maneira a formar pequenas câmaras flageladas arredondadas e o âtrio usualmente desaparece, exceto pelos canais hídricos que levam ao ósculo. A água entra na esponja através dos poros dérmicos provavelmente localizados entre células e passa pelos espaços subdérmicos.

Muitas esponjas (a maioria) são constituídas segundo a arquitetura leuconóides, fato que põe em evidência a eficácia desse tipo de estrutura. As esponjas leuconóides são compostas por uma massa de câmaras flageladas e canais hídricos e podem atingir um tamanho considerável.

1.4 Fisiologia

Os aspectos fisiológicos dos poríferos são muito dependentes da corrente de água que fluem através do organismo. O volume de água que passa é extremamente alto. O ósculo é regulado de forma a diminuir ou até parar o fluxo.

Digestão:

O hábito filtrador envolve necessariamente a formação de uma corrente unidirecional de água, que entra pelos poros trazendo alimentos, circula pelo âtrio e sai pelo ósculo. Desta forma as partículas alimentares são capturadas e filtradas nas câmaras flageladas pelos coanócitos. Tanto os coanócitos como os amebócitos fagocitam o alimento e transferem-no para outras células. Portanto a digestão é intracelular. Os detritos são eliminados pelo fluxo de água.
As esponjas se alimentam de material particulado extremamente fino. Estudos efetuados em três espécies de esponjas jamaicanas mostraram que 80% da matéria orgânica filtrável consumida por estas esponjas tem um tamanho inferior àquele que pode ser resolvido pela microscopia comum. Os outros 20% constituem bactérias, dinoflagelados e outros pequenos seres planctônicos.

Aparentemente, as partículas de alimento são selecionadas principalmente com base em seu tamanho, sendo retiradas no curso de sua passagem pelas câmaras flageladas.

Apenas partículas menores que um certo tamanho podem entrar nos poros dérmicos, essas são partículas finalmente filtradas pelos coanócitos. A captação de partículas resulta provavelmente do fluxo de água através das microvilosidades que compõem o colarinho.

Partículas grandes (5 a 50 µm) são fagocitadas por células que revestem os canais inalantes. Partículas com dimensões bacterianas ou ainda menores (menor que 1 µm) são removidas e engolfadas pelos coanócitos.

Respiração, Circulação e Excreção:

As trocas gasosas ocorrem por simples difusão entre a água que entra e as células do
animal. As excretas nitrogenadas (particularmente amônia) saem do organismo junto com a corrente de água. Não há, portanto, sistema circulatório.

Sistema Nervoso:

Não existe sistema nervoso. As reações são localizadas e a coordenação é em função da transmissão de substâncias mensageiras por difusão no meso-hilo ou por células amebóides se locomovendo. Pode também ocorrer entre células fixas que estejam em contato.

Reprodução:

A reprodução pode ser assexuada ou sexuada.

Assexuada:
Regeneração: Ocorre quando parte do animal fragmenta-se e os pedaços são facilmente regenerados formando novos indivíduos.
Brotamento: Em algumas espécies ocorrem expansões laterais do corpo, denominadas brotos. Estes podem desprendê-los e depois se fixar em um substrato.
Gemulação: Ocorre em esponjas de água doce e em algumas espécies marinhas. Nestas esponjas formam-se estruturas reprodutoras chamadas gêmulas. Estas são constituídas por aglomerados de amebócitos e arqueócitos envoltos por uma membrana rígida formada por espinhas e por material semelhante a esponjina, que deixa uma pequena abertura, denominada **micrópila**. Isto confere às gêmulas proteção contra condições ambientais adversas (baixas temperaturas, falta d’água, etc.). Em condições favoráveis, as células internas são liberadas e se diferenciam nos outros tipos de células sob um substrato.

Sexuada:

Nos poríferos ocorre hermafroditismo ou sexos separados. Os óvulos e espermatozóides são originados dos arqueócitos e amebócitos. Os espermatozóides quando maduros, saem pelo ósculo, juntamente com a corrente exalante de água. Penetram em outras esponjas pelos poros através de correntes inalantes e são captados pelos coanócitos. Esses se modificam em células amebóides, transportando-o até o óvulo presente no meso-hilo onde ocorre a fecundação, que é portanto, interna. Do ovo surge uma larva ciliada, que abandona o corpo da esponja. Após breve período de vida-livre (não mais que dois dias) fixa-se a um substrato e dá origem à esponja adulta.

Depois de se fixar através da extremidade anterior, a larva sofre uma reorganização interna comparável à gastrulação de outros animais.

1.5 Aspectos Evolutivos

As esponjas são consideradas metazoários parazoas, ou seja, animais sem tecidos verdadeiramente diferenciados e nenhum órgão. O restante dos seres do reino animal são chamados de eumetazoa, ou seja, animais “verdadeiros” com tecidos diferenciados, órgãos, ou pelo menos boca e cavidade digestiva.

A origem dos poríferos é ainda incerta, porém evidências sugerem que derivam de algum tipo de flagelado colonial simples, oco e de vida livre, talvez o mesmo grupo que deu origem aos ancestrais dos outros metazoários. Outra abordagem leva em consideração a semelhança estrutural entre os coanócitos e os protozoários coanoflagelados, o que indica uma origem distinta, sem relação com os outros metazoários.

O caráter primitivo do grupo, como já mencionado, é a ausência de órgãos e o baixo nível de diferenciação e inter-dependência celular. Entretanto, o sistema de canais hídricos e falta de extremidade anterior e posterior é característica singular deste grupo, não sendo encontrado em nenhum outro filo.
1.6 As Classes de Esponjas

Aproximadamente 10.000 espécies de esponjas foram descritas até o momento, estando estas distribuídas em 4 classes:

1.6.1 Classe Calcarea

Os membros dessa classe, conhecidos como esponjas calcáreas, distinguem-se por possuírem espículas compostas de CaCO₃. Nas outras classes as espículas são invariavelmente silicosas. Os três graus de estruturas (Ascon, Sycon e Leucon) são encontrados. A maioria das espécies tem menos de 10 cm de altura.

1.6.2 Classe Hexactinellida

Os representantes dessa classe são conhecidos como esponjas-de-vidro. O nome Hexactinellida vem do fato que as espículas são do tipo com seis pontas ou hexáctinas. Além disso, frequentemente algumas espículas estão fundidas formando um esqueleto que pode ser reticulado, constituído por longas fibras silicosas. Por isso elas são então chamadas de esponjas-de-vidro. A forma siconóide é dominante.

Vivem principalmente em águas profundas (450 a 900 m de profundidade em média), sendo totalmente marinhas.

Há um átrio bem desenvolvido e um único ósculo que às vezes pode estar coberto por uma placa crivada formada por espículas fundidas. Os pinacócitos presentes em todas as demais classes estão ausentes, sendo que a epiderme é formada por pseudópodos interconectados de amebócitos.

Algumas espécies do gênero *Euplectella* apresentam uma interessante relação comensal com uma certa espécie de camarão (*Spongicola*). Quando um jovem macho e uma fêmea entram no átrio, após crescerem, não podem escapar devido a placa crivada que cresce e recobre o ósculo. Por isso, passam a vida toda presos no interior da esponja alimentando-se do plâncton, que lhes chega através de correntes de água, e reproduzindo-se, sendo por isso considerados símbolos da união eterna por certos orientais.

1.6.3 Classe Demospongiae

Contém 90% das espécies de esponjas, distribuídas desde águas rasas até profundas.

A coloração frequentemente brilhante é devido a grânulos de pigmento localizados nos amebócitos. Espécies diferentes são caracterizadas por diferentes cores.

O esqueleto dessa classe é variável, podendo consistir de espículas silicosas ou de fibras de espongina ou uma combinação de ambas.

Todas as Demospongiae são leuconóides. As maiores esponjas conhecidas pertencem a essa classe. Exemplo: *Spheciospongia* com mais de 1 m de diâmetro e altura. Há representantes de água doce.

A família Spongidae contém as famosas esponjas de banho cujo esqueleto é composto apenas por espongina. *Spongia* e *Hippospongia*, dois géneros de valor comercial, são coletadas em importantes fundos de pesca de esponjas no Golfo do México, Caribe e Mediterrâneo.

As esponjas são coletadas por mergulhadores deixando que o tecido vivo se decomponha na água. O esqueleto restante, composto por fibras entrelaçadas de espongina, é então lavado.
1.6.4 Classe Sclerospongiae

Classe pequena no número de espécies marinhas, sendo encontradas em grutas e túneis associadas a recifes de coral em várias partes do mundo. Todas leuconóides.

Possuem, além do esqueleto interno de espículas silicosas mais espongina, um invólucro externo de CaCO₃.

2 FILO CNIDARIA

2.1 Conceitos Gerais

O Filo Cnidaria apresenta animais predominantemente marinhas, incluindo as hidras, medusas, anêmonas-do-mar e corais.

O termo “Coelenterata” (celenterados), comumente utilizado como sinônimo de Cnidaria, é atualmente empregado para abranger dois filos distintos de animais: o Filo Cnidaria e o Filo Ctenophora. Assim, o termo celenterado passa a não ter mais valor taxonômico de filo, sendo apenas utilizado como um coletivo do grupo. O filo Ctenophora* é pequeno, com cerca de 100 espécies conhecidas, distribuídas em duas classes, e por isso nosso estudo se restringirá ao filo Cnidaria somente.

Nos cnidários nota-se o início de uma organização tecidual. Existe uma boca, circundada por tentáculos, e uma cavidade digestiva, chamada cavidade gastrovascular. O antigo nome celenterados provém de cele, que significa cavidade e entero que quer dizer intestino. Já a denominação Cnidaria provém de estruturas (células) de defesa características do filo, chamadas cnidócitos.

A presença de boca e cavidade digestiva tem importante significado evolutivo. Os alimentos podem ser ingeridos em maiores proporções e digeridos na cavidade antes de penetrarem nas células.

2.2 Características gerais

✓ Diblásticos;
✓ Simetria radial, com tentáculos ao redor da boca;
✓ Com espaço interno para digestão, a “cavidade gastrovascular”;
✓ Corpo consistindo de dois tecidos: epiderme e gastroderme;
✓ Presença de cnidócitos contendo nematocistos;
✓ Sistema nervoso em rede difusa presente.

Os membros deste filo podem apresentar-se em duas formas estruturais distintas: medusa, a qual é de vida livre e pólipo, que vive fixo em substratos (rochas, conchas, etc) (figura 17). O pólipo pode, em certas circunstâncias, se deslocar através de movimentos tipo “mede-palmos” e por cambalhotas (por exemplo, as hidras).

*O Filo Ctenophora (do grego ktenos, pente e phoros, portador) é exclusivamente marinho. Possui indivíduos medusóides, embora a simetria radial tenha se transformado em birradial por meio de dois tentáculos. Presença de cavidade gastrovascular com boca e poros anais. A parede do corpo tem duas camadas de células entre as quais há uma espessa mesogléia que apresenta amebócitos e fibras musculares lisas. A locomoção se dá por placas ciliadas fundidas (placas de pentes) dispuestas em oito faixas orais/aborais. As trocas gasosas ocorrem por difusão. São carnívoros e hermafroditas na totalidade.
A parede do corpo é formada por três camadas: **epiderme**, revestindo externamente o organismo, onde se encontram células epitélio-musculares, células intersticiais, de defesa e sensoriais; **gastroderme** que reveste a cavidade gastrovascular, onde há células nutritivo-musculares que produzem pseudópodos para englobar os alimentos, células enzimático-glandulares que secretam enzimas digestivas e, em algumas espécies, algas simbióticas; e a **mesogélia**, que se localiza entre as duas primeiras.

A célula característica do filo é chamada **cnidócito** (figura 18). Esta tem a função de defesa e captura de alimento. Localiza-se por toda a epiderme, mas é particularmente abundante nos tentáculos. Os cnidócitos são células ovóides que contêm no seu interior uma cápsula com um tubo enrolado chamada **nematocisto**. Quando ocorre algum tipo de estímulo mecânico ou químico, os cnidócitos descarregam os nematocistos que podem prender, paralisar ou inocular substâncias tóxicas na presa. Existem vários tipos de nematocistos, entre eles os penetrantes, os volventes e glutinantes.

Um grande número de cnidários, em todas as classes, abriga autótrofos simbiontes: zooclorelas (algas verdes) na gastroderme de hidrozoários; zooclorelas na mesogélia de cífozoários; dinoflagelados na gastroderme de antozoários.

2.3 Classificação

Existem cerca de 10 mil espécies viventes descritas. A divisão delas em taxa depende do indivíduo dominante no ciclo ser pólipio ou medusa.

2.3.1 Classe Hydrozoa

Nesta classe encontra-se um grande número de cnidários. Entretanto eles são muito pequenos e pouco conhecidos.

Os hidrozoários podem apresentar tanto a forma polipóide como medusóide, ou então as duas durante o ciclo de vida.

Dentre os membros mais estudados, merecem destaque a *Hydra*, que é de água doce, na qual desapareceu o estágio medusóide; *Obelia* que apresenta os dois estágios (pólipio e medusa) durante o seu ciclo de vida e a caravela portuguesa (*Physalia*). Esta última, nada mais é do que uma colônia natante com uma estrutura flutuante - o flutuador - cheio de gás. Apresenta indivíduos medusóides e polipóides modificados e um único tentáculo longo para
captura de alimento (pescador).

Nos hidrozoários a mesogléia jamais é celular, a gastroderme não apresenta nematocistos e as gônodas são epidérmicas ou, se gastrodérmicas, os óvulos e espermatozóides são emitidos diretamente para o exterior e não para dentro da cavidade gastrovascular. Estas características peculiares servem como união de todos os membros desta classe (figura 18).

Alguns pólipos, principalmente em *Hydra*, vivem solitariamente, contudo a maioria das espécies tem vida colonial. Entre estes últimos, o polimorfismo, ou seja, a presença de indivíduos diferentes estrutural e funcionalmente pode ocorrer. Na colônia polimórfica, o tipo mais numeroso e destacado é o pólipo nutritivo, conhecido como gastrozoóide. Os gastrozoóides capturam e ingerem as presas, tendo portanto a função de nutrição na colônia.
Outros tipos importantes presentes são os indivíduos reprodutores - os medusóides - que são produzidos como brotos assexuados de alguma parte da colônia. Estes podem se destacar, como medusas livres ou ficarem retidos como gonóforos. Os medusóides podem também podem ser produzidos por pólipos especializados chamados gonozoóides.

2.3.2 Classe Scyphozoa

Os membros desta classe apresentam predominantemente no ciclo de vida, a forma medusóide, sendo o pólipo restrito ao estágio larval. Várias especializações levaram a estrutura medusóide a uma maior complexidade: tamanho maior que as medusas dos hidrozoários, mesogléia celular, cavidade gástrica septada ou com filamentos gástricos, cnidócitos na gastroderme e desenvolvimento de órgãos sensoriais (figura 19.a). As águas-vivas são os cifozoários mais conhecidos, incluindo o gênero *Aurelia* (fig. 19.b).

Figura 19.a: Anatomia de um cifozoário.

Figura 19.b: *Aurelia* sp, um cifozoário.
2.3.3 Classe Anthozoa

Nestes organismos o estágio medusóide está completamente ausente. São as anêmonas-do-mar, os corais escleratínios (produtores de esqueletos externos de CaCO$_3$) e octocorais característicos com oito tentáculos.

É a maior classe dos cnidários. Apresentam cavidade gastrovascular mais especializada que as outras classes, com várias divisões de um mesentério longitudinal, fixados na parede do corpo, o que aparentemente auxilia na circulação de água e na digestão de presas maiores (figura 20).

O pólipo dos antozoários é mais especializado e a presença de mesogléia celular, cavidade gastrovascular septada, cnidócitos nos filamentos gástricos e gônadas gastrodérmicas, indicam que eles estão filogeneticamente relacionados mais intimamente
com os Scyphozoa que os Hydrozoa.

Anêmonas-do-mar são antozoários solitários familiares e ocorrem em todo o mundo em águas costeiras. Elas comumente vivem presas a substratos duros na região litoral. Os antozoários formadores de corais são constituídos de colônias de pólipos.

Os Recifes de Coral

Os recifes de coral são formações rochosas calcárias que dão suporte a um amplo conjunto de plantas e animais marinhos, e alguns destes organismos de recife secretam carbonato de cálcio que forma a maior parte do recife.

De todos os organismos secretores de CaCO_3_, os corais escleratínios são os mais importantes. As exigências ambientais desses animais também descrevem os limites de distribuição do recife.

Corais formadores de recifes contêm algas simbióticas que necessitam de luz para a fotossíntese. Consequentemente, a distribuição vertical dos recifes é restringida pela profundidade de penetração de luz. Assim, os recifes são encontrados apenas em lugares onde a água circulante contenha pequenas quantidades de material em suspensão, ou seja, águas de baixa turbidez e baixa produtividade. Outro fator limitante para a presença de recifes de coral é a temperatura, cuja média mínima não deve ser inferior a 20°C, o que acaba restringindo os recifes coralinos a áreas como o Caribe, Oceano Índico e Pacífico tropical. No Brasil o Atol das Rocas é originado de algas produtoras de esqueleto calcário.

Os tipos principais de recifes de coral são:
- Recifes em franja: projetam-se diretamente em direção ao mar, a partir da praia;
- Recifes em barreira: são separados da massa terrestre por uma laguna;
- Atóis: repousam sobre ápices de vulcões submersos. Usualmente circulares ou ovais com uma laguna central e partes da plataforma do recife podem emergir como uma ou mais ilhas.

2.4 Fisiologia

2.4.1. Digestão

O alimento é capturado pelos tentáculos e imobilizado por cnidócitos. A digestão é inicialmente extracelular e depois intracelular.

2.4.2. Respiração/Circulação/Excreção

Difusão direta com o meio ambiente.

2.4.3. Sistema Nervoso

Os cnidários são os primeiros animais a apresentarem um sistema nervoso, que é bastante primitivo ainda. Ele é difuso pelo corpo; os neurônios são arranjados como uma rede nervosa na base da epiderme e gastroderme. A transmissão de impulsos tende a ser irradiente.

2.4.4. Reprodução

A reprodução assexuada ocorre por brotamento ou fissão binária. A reprodução sexuada envolve a formação de gametas. Abaixo são descritas a forma de reprodução sexuada encontrada nas diferentes classes.

• Classe Hydrozoa:

Em *Hydra* não existe a forma medusóide. A maioria é dióica e a reprodução ocorre principalmente no outono. Existem células especiais na epiderme do pólipio que dão origem
aos óvulos e espermatozóides. No caso do óvulo, após seu aumento de tamanho, há ruptura da epiderme, expondo-o ao meio exterior. Dentre muitos espermatozóides liberados na água, um único fecunda o óvulo. Após a fecundação o ovo é recoberto por uma capa quitinosa. Quando completa-se esse processo, o embrião encapsulado destaca-se do corpo parental e permanece em sua cápsula protetora durante todo o inverno. Somente na primavera a cápsula amolece e a hidra jovem emerge.

Em **Obelia** existem as formas polipóides e medusóides. Neste gênero ocorre metagênese, ou seja, há alternância de gerações entre pólipos e medusas. O pólipo produz assexuadamente medusas livre-natantes, normalmente dióicas. Estas se reproduzem sexualmente através da liberação de espermatozóides e óvulos na água. Após a fecundação forma-se uma larva ciliada plânula que se fixa a um substrato e desenvolve novamente um pólipo adulto (figura 21).

1. Desenvolvimento embrionário
 a) Zigoto
 b-d) Clivagem
e) Celoblastula
2. Plânula
3. Pólipo jovem
4-5. Desenvolvimento colonial
 a) gastrozóide
 b) gonozóides
6. Partes da colônia
7. Medusa jovem
8. Medusa matura

Figura 21: Ciclo de vida de um hidrozoário - **Obelia**.
• Classe Scyphozoa:

Em *Aurelia* as formas medusóides adultas dióicas liberam espermatozóides e óvulos na água. Com a fecundação e fixação da larva plânula em um substrato, desenvolve-se uma pequena larva polipóide chamada cifistoma que é muito parecida com uma hidra. O cifistoma fixo se reproduz assexuadamente por brotamento dando origem a várias destas estruturas que ficam arranjadas uma sobre as outras (estróbilo). Começa então a ocorrer fissões neste estróbilo e cada cifistoma se solta para o meio circundante dando origem a novas medusas (figura 22).

Figura 22: Ciclo de vida de um cifozoário - *Aurelia.*
• Classe Anthozoa:
Nas anêmonas-do-mar os espermatozóides e óvulos são produzidos tanto por indivíduos hermafroditas ou dióicos. A fecundação pode ocorrer na cavidade gastrovascular ou no exterior do corpo e a larva formada fixa-se para o desenvolvimento do adulto.

3 FILO PLATYHELMINTHES
(dos gregos: *platy*, achatado; *helminthes*, vermes)

De todos os filos bilaterais, os vermes chatos de vida livre do filo Platyhelminthes são considerados há muito tempo os mais primitivos. Porém, alguns zoólogos questionam essa visão, em parte porque acredita-se que vários atributos dos vermes chatos, anteriormente considerados indicativos da primitividade do filo, na verdade sejam resultado do pequeno tamanho do corpo.

3.1 Conceitos Gerais

O filo Platyhelminthes abrange os vermes achatados. A maioria é de vida livre, como as planárias, porém existem espécies parasitas de vertebrados, incluindo o homem (por exemplo, esquistossomo e solitária).

Três aspectos importantes a serem destacados no filo são: a ocorrência de simetria bilateral verdadeira; uma evolução de uma terceira camada celular (parênquima), entre a epiderme e o revestimento intestinal (gastroderme); e o achatamento dorsoventral do corpo. A simetria bilateral está relacionada à motilidade do animal, enquanto o achatamento é encarado como uma consequência inevitável da ausência dos sistemas circulatório e respiratório.

A porção do corpo que primeiro entra em contato com o meio e onde se localizam boa parte dos órgãos sensoriais é chamada região anterior. A extremidade oposta é denominada região posterior. A parte superior do corpo chama-se dorsal e a inferior, ventral.

O intestino termina em fundo cego e a boca é tipicamente a única abertura para o trato digestivo, quando este se encontra presente.

Neste filo aparece, pela primeira vez, o sistema “excretor” protonefridial. As aspas são usadas porque sua função provavelmente é principalmente osmorreguladora e não excretora. Assim, os principais produtos de excreta são eliminados principalmente pela superfície do corpo, por difusão. Os protonefrídios consistem de tubos em fundo cego, que terminam em “células flama”, que consistem de duas unidades celulares, sendo uma célula tubular e uma célula de capuz, com dois ou mais flagelos. Esses batem, como uma chama, e os líquidos entram, dirigindo-se através de túbulos até um poro excretor e, finalmente, para o exterior do corpo.

Características gerais do filo:
✓ Animais triblásticos;
✓ simetria bilateral;
✓ acelomados;
✓ trato digestivo incompleto;
✓ dorsoventralmente achatados.
3.2 Classificação

Classe Turbellaria
Apresenta membros de vida livre, entre eles as planárias de água doce, *Dugesia* sp e *Geoplana* sp.

Classe Cestoda
Todos os membros desta classe são endoparasitas e incluem as solitárias, *Taenia* sp.

Classe Trematoda
Os vermes desta classe são conhecidos como facíolas e representam um dos principais grupos de parasitas de outros animais. Dentre os tremátodos mais conhecidos encontra-se o *Schistosoma mansoni*.

3.2.1 Classe Turbellaria
As planárias são dorsoventralmente achatadas. A boca é a única abertura do trato digestivo, ou seja, o aparelho digestivo é *incompleto*, não há a presença de ânus. Ocorrem, normalmente, na região anterior do animal, a presença de projeções chamadas *aurículas*, dotadas de receptores ciliares para recepção química principalmente, e dois *ocelos* (estruturas fotorreceptoras) (figura 23). A parede ventral do corpo é recoberta por uma epiderme ciliada para facilitar a locomoção. Uma característica peculiar dos turbelários é a presença de numerosas células glandulares localizadas no interior da epiderme ou mais internamente. Essas glândulas fornecem adesão, revestimento do substrato para locomoção ou recobrimento da presa. Outra peculiaridade é a presença de *rabditos*, que são corpúsculos em forma de bastonetes localizados perpendicularly à superfície. Eles são secretados por glândulas epidérmicas. A função é incerta, porém há indícios que sejam usados na defesa ou para formação de muco em torno do corpo.

![Figura 23: Planária](image)

Internamente, percorrendo todo o corpo do animal, existem camadas musculares que distendem e contraem o corpo. O pequeno tamanho, formato achatado e o intestino ramificado (nas formas maiores) fazem com que sejam desnecessários sistemas especializados para transporte interno, trocas gasosas e excreção.

As planárias são predominantemente carnívoras. O intestino é em fundo cego, com a boca servindo tanto para a ingestão quanto para a egestão. As ramificações presentes no intestino (divertículos laterais) aumentam a superfície para a digestão e distribuição dos alimentos. Isto compensa a ausência de um sistema interno de circulação. A boca é situada, geralmente, no meio da superfície ventral e antes do alimento chegar ao intestino há uma
faringe muscular de grande mobilidade (chamada de **protrátil**, ou seja, que pode ser protraída), que é usada na captura do alimento. A digestão é portanto inicialmente extracelular e posteriormente intracelular (figura 24A). A presa é engolida inteira pelos turbelários. Naqueles que possuem uma faringe protraível, essa é inserida no corpo da presa, sendo a ingestão dos tecidos auxiliada por enzimas proteolíticas produzidas pelas glândulas faringianas. O conteúdo parcialmente digerido e liquefeito é bombeado então para o interior do intestino por ação peristáltica.

Figura 24: Anatomia da planária - Sistemas digestivo (A) e excretor (B).
Há a presença de um sistema excretor formado por **protonefrídios**. Esses são do tipo "célula-flama", cada qual consistindo de um túbulo ramificado contendo numerosos capilares em fundo cego com flagelos do lado interno. Essas estruturas drenam os resíduos metabólicos para os ductos excretores que são eliminados para o exterior através de poros dorsais. Entretanto, a função dos protonefrídios parece ser mais a regulação osmótica que a excreção (figura 24B).

Figura 25: Tipos de reprodução em planária.

Quanto ao sistema nervoso, existe um par de gânglios nervosos ventrais localizados na cabeça. Deles saem cordões nervosos longitudinais ligados transversalmente por comissuras. Há inervação principalmente da musculatura do animal.

A reprodução assexuada ocorre por fissão binária com posterior regeneração. Com relação à reprodução sexuada, embora as planárias sejam hermafroditas, é raro
apresentarem auto-fecundação. Entre elas, geralmente há cópula, com dois indivíduos colocando em contato seus poros genitais e ocorrendo fecundação interna. Os ovos resultantes são eliminados e deles saem planárias jovens, que não passam por estágio larval: o desenvolvimento é direto (figura 25).

3.2.2 Classe Trematoda

Os tremátodas, mesmo sendo parasitas, apresentam estruturas mais semelhantes aos turbelários que com a outra classe de platelmintes (os céstodas).

Ocorrem adaptações para a vida parasita no grupo, tais como: presença de ventosas adesivas orais; tegumento com cutícula protetora que impede a ação de enzimas digestivas dos hospedeiros; ausência órgãos dos sentidos; há produção de muitos ovos na reprodução com o objetivo de facilitar a sobrevivência e infestação de novos hospedeiros.

A excreção e as trocas gasosas ocorrem através do tegumento.

Na reprodução, os espermatozóides deixam os testículos e se armazenam na vesícula seminal. Ocorre copulação mútua e fertilização cruzada. O ciclo de vida pode envolver de um a vários hospedeiros. Os tremátodas que possuem um único hospedeiro foram colocados na ordem Monogenea. Nesta ordem encontram-se os parasitas de muitos peixes marinhos e dulcícolas e também anfíbios, répteis e moluscos. A grande maioria são parasitas externos (ectoparasitas). A ordem Digenea contém a maioria dos tremátodas parasitas, onde há o envolvimento de 2 a 4 hospedeiros no ciclo de vida dos organismos, sendo a maioria endoparasitas. Nesta ordem é que se encontra o responsável pela esquistossomose humana (Schistosoma mansoni). A figura 26 mostra dois tremátodas endoparasitas: Fasciola hepatica e Schistosoma mansoni.

3.2.3 Classe Cestoda

Esta classe apresenta os platelmintes mais especializados.

O corpo é recoberto por um tegumento protetor, como nos tremátodas, porém esse tem papel adicional na absorção de alimento, uma vez que ocorre ausência total de trato...
digestivo em algumas espécies (*Taenia* sp).

Há uma região anterior chamada **escólex**, adaptada a aderência no hospedeiro com ganchos e ventosas. Seguida desta estrutura existe uma região denominada **colo** da qual se origina vários segmentos individuais arranjados linearmente. Esses segmentos são chamados **proglótides** e compõem a maior parte do verme (figura 27). As tênias são geralmente longas, podendo atingir até 12 metros de comprimento. As proglótides mais jovens estão localizadas mais próximas do colo, aumentando de tamanho e maturidade em direção à região posterior do animal.

![Figura 27: Anatomia da *Taenia* sp, com detalhe para o escólex e a proglótide.](image)

O sistema nervoso e excretor (protonefrídios) se estendem ao longo das proglótides. Existe uma massa nervosa no escólex e dois cordões longitudinais laterais que se estendem para trás. Comissuras conectam os cordões longitudinais em cada proglótide.
Em cada proglótide existe o sistema reprodutor masculino e feminino. Esses animais são, portanto, hermafroditas. Depois que ocorre a fecundação, o útero enche-se de ovos, dando à proglótide o aspecto gravídico. São as proglótides gravídicas que se desprendem, sendo eliminadas com as fezes humanas (figura 27 E).

Os cestódeos não apresentam sistema digestivo, recebendo o alimento já digerido pelo hospedeiro. O alimento é incorporado pela superfície do corpo do parasita.

3.3 Doenças causadas por Platelmintes ao homem:

3.3.1 Esquistossomose
Agente etiológico: *Schistosoma mansoni* - Classe Trematoda
Local: Sistema porta hepático (veias próximas à parede intestinal).

Os adultos desta espécie habitam as veias intestinais. Eles são dióicos com dimorfismo sexual, sendo que o macho mede de 6 a 10 mm de comprimento e 0,5 mm de diâmetro. Existe um sulco ventral que estende-se por quase toda extensão do corpo do macho e neste sulco acomoda-se a fêmea, que é mais longa (15 mm), porém mais fina (figura 28a). Após a postura dos ovos, a fêmea estira-se do sulco do macho ou o abandona. Os ovos depositados perfuram a parede intestinal, causando sangramento e passam desta maneira para o interior do intestino e daí para o meio externo junto com as fezes.

Figura 28a: *Schistosoma mansoni*, macho e fêmea durante a cópula.

Ciclo da doença:

Os ovos que saem com as fezes de um homem infectado, ao atingirem a água, eclodem em uma larva ciliada chamada *miracídeo*. Esta penetra num caramujo planorbídeo do gênero *Biomphalaria*. No interior do caramujo, o miracídeo sofre reprodução assexuada, originando cerca de 200 esporocistos que vão produzir novas larvas chamadas *cercária*. Cada miracídeo pode gerar até 1000 cercárias. As cercárias abandonam o caramujo e tornam-se livre-natantes. Ao entrar em contato com o homem, elas penetram pela pele, infectando-o. A cercária é levada pela corrente sanguínea aos pulmões, fígado e finalmente se desenvolve nas formas adultas nas veias intestinais, onde se reproduz, como anteriormente descrito, reiniciando o ciclo (figura 28b).

Sintomas:
- Mal-estar, cansaço, febre alta;
- Emagrecimento
- Diarréia, fezes sanguinolentas
- Cólicas hepáticas e intestinais
- Hepatomegalia (dilatação do fígado)
- Ascite (barriga d’água)

Profilaxia:
- Educação sanitária
- Saneamento básico (redes de esgotos)
- Eliminação do caramujo
- Evitar contato com água contaminada
3.3.2 Teníase

Agente etiológico: *Taenia solium* (solitária) – Classe Cestoda

Local: Intestino

As solitárias adultas permanecem fixas na parede intestinal através dos ganchos e ventosas. O verme pode atingir até 7 metros de comprimento.

Ciclo da doença:

As proglótides maduras com ovos são eliminadas pelas fezes do homem infectado. Ao chegar ao meio externo, os ovos são ingeridos pelo hospedeiro intermediário – o porco. Neste, os ovos eclodem e as larvas oncosferas atravessam a parede intestinal, caem na corrente sangüínea e são transportados para qualquer tecido mole (pele, músculos esqueléticos e cardíacos, olhos, cérebro, etc), porém preferem os músculos com maior movimentação e oxigenação (coração, cérebro e língua), onde se desenvolvem num estágio chamado cisticerco. O cisticerco, também conhecido como *canjiquinha*, é um estágio ovalado com cerda de 10 mm de comprimento, apresentando o escólex invaginado. O homem sadio, então, ao comer a carne de porco crua ou pouco cozida acaba ingerindo o cisticerco. No intestino, esta estrutura libera o escólex que é evaginado e se desenvolve no verme adulto, ficando fixado à parede intestinal (figura 29).
Figura 29: Ciclo de vida de *Taenia solium*.

Sintomas:
- Cólicas intestinais
- Fome constante ou ausente
- Diarréia

Profilaxia:
- Saneamento básico e educação sanitária
- Não ingerir carne crua ou mal cozida
- Construção de pocilgas (impedir o acesso de suínos às fezes humanas)
- Inspeção fiscal de carnes

Obs: Cisticercose (ingestão de ovos da *Taenia solium*)

Quando o homem ingere ovos da solitária, ele passará a ser o hospedeiro intermediário no ciclo da doença, ou seja, os estágios desenvolvidos no porco ocorrerão no homem. Neste caso os cisticercos, dependendo da localização que vierem a se fixar, no cérebro por exemplo, podem causar problemas ao portador, como dores de cabeça, vômitos, desordem mental (delírios), alucinações entre outros mais graves. A localização no globo ocular, por exemplo, pode levar ao deslocamento da retina e/ou perda da visão. Não são raros casos de mortes do hospedeiro. É bom lembrar que se o cisticerco não for ingerido pelo hospedeiro definitivo, não dará continuidade ao ciclo.