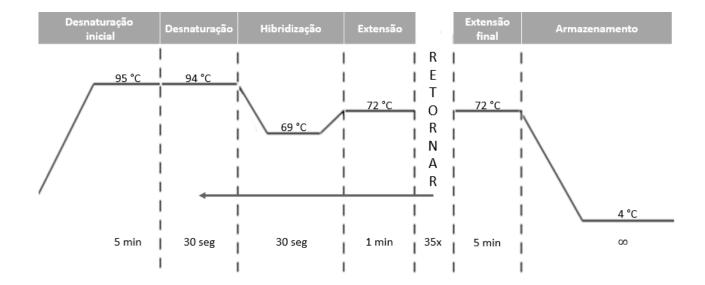
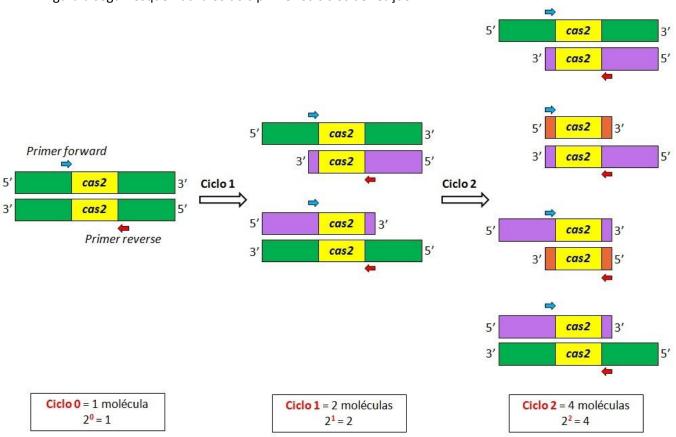
Aula Prática 3: REAÇÃO EM CADEIA DA POLIMERASE (PCR)

A. Procedimento


A partir do DNA genômico de *Streptomyces clavuligerus*, será amplificado por PCR o gene *cas2*, que codifica a proteína clavaminato sintase (CAS). A clavaminato sintase é uma proteína Fe (II)/2-oxoglutarato oxigenase importante na biossíntese do ácido clavulânico, um produto do metabolismo secundário utilizado na indústria farmacêutica como antibiótico.

- 1) Coloque os regentes para descongelar em banho de gelo e realize todo o preparo das amostras no gelo para evitar que as reações se iniciem prematuramente.
- 2) Em um tubo de 0,2 mL, prepare a reação no volume final de 50 μL conforme discriminado na tabela a seguir.
 - Procure pipetar os reagentes começando por aqueles de maior volume.
 - Certifique-se que não haja excesso de reagente na superfície externa da ponteira.
 - Após a adição do reagente ao tubo, certifique-se que não sobre líquido dentro da ponteira.


Reagente	Quantidade	Concentração Final
Água milli-Q estéril	35,5 μL	-
Tampão da <i>Taq</i> DNA Polimerase (10X)	5 μL	1 X
MgCl ₂ (50 mM)	2,5 μL	2,5 mM
dNTPs (10 mM)	1 μL	0,2 mM
Primer forward (10 μM)	1 μL	0,2 μΜ
Primer reverse (10 μM)	1 μL	0,2 μΜ
DMSO (100%)	2,5 μL	5%
DNA molde (DNA genômico)	1 μL	0,1 – 1 μg
Taq DNA Polimerase (2 U/μL)	0,5 μL	1 U

- 3) Confira se não há gotas do líquido dispersas na parede do tubo. Se houver, centrifugue rapidamente.
- 4) Coloque o tubo no termociclador sob as seguintes condições de reação:

Etapa	Temperatura	Tempo
Desnaturação inicial	95 °C	5 min
35 ciclos (Desnaturação, hibridização e extensão)	94 °C	30 seg
	69 °C	30 seg
	72 °C	1 min
Extensão final	72 °C	5 min
Armazenamento	4 °C	∞

A figura a seguir esquematiza os dois primeiros ciclos de reação.

Os grupos de 1 a 4 utilizarão *primers* para posterior clonagem do gene *cas2* no plasmídeo de expressão pGEX-5X-1. Na sequência desses *primers*, foram inseridos sítios de reconhecimento para as enzimas de restrição *Bam*HI e *Xho*I, que permitirão que a ORF possa ser inserida no plasmídeo de expressão pGEX-5X-1 na fase de leitura correta.

De forma similar, os grupos de 5 a 9 utilizarão *primers* para posterior clonagem do gene *cas2* no plasmídeo de expressão pET28a. Na sequência desses *primers*, foram inseridos sítios de reconhecimento para as enzimas de restrição *Nde*I e *Xho*I, permitindo que ORF amplificada possa ser ligada ao plasmídeo de expressão pET28a.

B. Eletroforese do produto de PCR

- 1) Retire 5 μL do produto de PCR e adicione 1 μL de tampão de amostra.
- 2) Aplique a mistura em uma canaleta do gel de agarose 0,8% e, em seguida, aplique a voltagem de 130 V por aproximadamente 40 min.
- 3) Utilize o transiluminador para analisar o gel no comprimento de onda de 260 nm.

C. Questões

- 1) Em que consiste o *primer* ou oligonucleotídeo usado na PCR? Por que os *primers* para uso na PCR não devem ser auto-complementares ou complementares entre si?
- 2) O que são e que processos ocorrem nas etapas de desnaturação, hibridização ("anelamento") e extensão no ciclo de PCR?
- 3) Quais as funções de uma desnaturação inicial e uma extensão final na PCR?
- 4) Por que a PCR resulta em um fragmento de DNA de tamanho determinado?
- 5) Para um primer ou oligonucleotídeo ser usado como iniciador específico na PCR, qual seu tamanho mínimo em bases?
- 6) Quantas cópias de DNA de interesse são obtidas após os 35 ciclos da PCR? Justifique.
- 7) Qual é a diferença nos produtos da Taq DNA polimerase e da Phusion DNA polimerase?

D. Informações adicionais

No site do NCBI (*National Center for Biotechnology Information*), estão disponíveis sequências de genes, RNA e proteínas de diversos organismos. Os registros do gene *cas2* (Gene ID: 6840451) estão disponíveis no link http://www.ncbi.nlm.nih.gov/gene/6840451